Incorporating New Technology Into a Surgical Technique: The Learning Curve of a Single Surgeon's Stereo-Electroencephalography Experience

Neurosurgery ◽  
2019 ◽  
Vol 86 (3) ◽  
pp. E281-E289 ◽  
Author(s):  
Robert A McGovern ◽  
Robert S Butler ◽  
James Bena ◽  
Jorge Gonzalez-Martinez

Abstract BACKGROUND Technological improvements frequently outpace the publication of randomized, controlled trials in surgical patients. This makes the application of new surgical techniques difficult as surgeons solely use clinical experience to guide changes in their practice. OBJECTIVE To quantitatively examine the learning curve of incorporating new technology into a surgical technique and discuss the clinical significance of incorporating this new technology into daily practice. To identify areas of improvement for operative efficiency and safety. METHODS A retrospective observational study examining quantitative measures of operative efficiency and safety from 2009 to 2017 in 454 consecutive patients undergoing stereo-electroencephalography depth electrode implantations. RESULTS The transition to a new robotic technique significantly improved operative times (196 min [95% CI 173-219] vs 115 min [95% CI 111-118], P < .0001). Cumulative sum (CUSUM) analysis demonstrated that mastery of the robotic technique took much longer than the frame-based technique (operative time peak at case 75 vs case 25, plateau of 150 vs 10 cases). Although hemorrhage rates using different vascular imaging techniques did not appear to differ using traditional statistical analysis (magnetic resonance imaging, MRI 22.3%, computed tomography angiography, CTA 17.9%, angiogram 18.1%, likelihood ratio χ2 = 4.84, P = .30), CUSUM analysis suggested MRI as the vascular imaging modality leading to higher hemorrhage and symptomatic hemorrhage rates at our center. CONCLUSION This experience demonstrates an improvement in operative efficiency through a series of changes made using clinical experience and intuition while transitioning to a completely new paradigm. CUSUM analysis identified potential areas for improvement in both operative efficiency and safety if used in a prospective manner.

2019 ◽  
Vol 47 (6) ◽  
pp. E5 ◽  
Author(s):  
Sauson Soldozy ◽  
Jacob Galindo ◽  
Harrison Snyder ◽  
Yusuf Ali ◽  
Pedro Norat ◽  
...  

Neuroimaging is an indispensable tool in the workup and management of patients with neurological disorders. Arterial spin labeling (ASL) is an imaging modality that permits the examination of blood flow and perfusion without the need for contrast injection. Noninvasive in nature, ASL provides a feasible alternative to existing vascular imaging techniques, including angiography and perfusion imaging. While promising, ASL has yet to be fully incorporated into the diagnosis and management of neurological disorders. This article presents a review of the most recent literature on ASL, with a special focus on its use in moyamoya disease, brain neoplasms, seizures, and migraines and a commentary on recent advances in ASL that make the imaging technique more attractive as a clinically useful tool.


2010 ◽  
Vol 28 (5) ◽  
pp. E20 ◽  
Author(s):  
Mario J. Cardoso ◽  
Michael K. Rosner

Object Minimally invasive lumbar spine surgery has dramatically evolved over the last decade. Minimally invasive techniques and transforaminal lumbar interbody fusion (TLIF) often require a steep learning curve. Surgical techniques require pre-positioning the patient in maximal kyphosis to optimize visualization of the disc space and prevent unnecessary retraction of neural structures. The authors describe their experience in validating the surgical technique recommendation of Wilson frame–induced kyphosis. Methods Over the past 6 months, data obtained in 20 consecutive patients (40 total levels) undergoing minimally invasive TLIF were reviewed. In each patient, preincision intraoperative radiographs were reviewed at L4–5 and L5–S1 with the patient on a Wilson frame in maximal lordosis and then in maximal kyphosis. The change in disc space angle at L4–5 and L5–S1 after changing from maximal lordosis to maximal kyphosis was reviewed. Descriptive statistics were calculated for sagittal plane angular measures at L4–5 and L5–S1 in lordosis and kyphosis, including absolute differences and percentage of change between positions. Inferential statistics were calculated using paired t-tests with α= 0.05. Results Twenty patients underwent single- or multilevel minimally invasive TLIF. Inducing kyphosis with the Wilson frame aided in optimizing exposure and decreasing the need for neural structure retraction. Both L4–5 and L5–S1 showed statistically significant (p < 0.001) and clinically meaningful changes with increased segmental flexion in the kyphotic position. At L4–5 the mean increase in flexion was 4.5° (95% CI 2.9–6.0°), representing an average 47% change. The mean increase in flexion at L5–S1 was 3.2° (95% CI 2.3–4.2°), representing an average 20.8% change. In lordosis the mean angle at L4–5 was 10.6 ± 4.4° and at L5–S1 was 17 ± 7.0°. In kyphosis the mean angle at L4–5 was 6.1 ± 4.5° and at L5–S1 was 13.8 ± 6.5°. Additionally, there was a statistically significant difference (p < 0.05) in percentage of change between the 2 levels, with L4–5 showing a greater change (27% more flexion) between positions, but the absolute mean difference between the levels was small (1.3°). Conclusions Minimally invasive TLIF is challenging and requires a significant learning curve. The recommended surgical technique of inducing kyphosis with the Wilson frame prior to incision significantly optimizes exposure. The authors' experience demonstrates that this technique is essential when performing minimally invasive lumbar spinal fusions.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1063
Author(s):  
Antonella Castellano ◽  
Michele Bailo ◽  
Francesco Cicone ◽  
Luciano Carideo ◽  
Natale Quartuccio ◽  
...  

The accuracy of target delineation in radiation treatment (RT) planning of cerebral gliomas is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Conventional magnetic resonance imaging (MRI), including contrast-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences, represents the current standard imaging modality for target volume delineation of gliomas. However, conventional sequences have limited capability to discriminate treatment-related changes from viable tumors, owing to the low specificity of increased blood-brain barrier permeability and peritumoral edema. Advanced physiology-based MRI techniques, such as MR spectroscopy, diffusion MRI and perfusion MRI, have been developed for the biological characterization of gliomas and may circumvent these limitations, providing additional metabolic, structural, and hemodynamic information for treatment planning and monitoring. Radionuclide imaging techniques, such as positron emission tomography (PET) with amino acid radiopharmaceuticals, are also increasingly used in the workup of primary brain tumors, and their integration in RT planning is being evaluated in specialized centers. This review focuses on the basic principles and clinical results of advanced MRI and PET imaging techniques that have promise as a complement to RT planning of gliomas.


2021 ◽  
pp. 019459982110151
Author(s):  
Rahul G. Baijal ◽  
Karla E. Wyatt ◽  
Teniola Shittu ◽  
Eugenia Y. Chen ◽  
Eric Z. Wei ◽  
...  

Objectives The aim of this study was to determine the incidence of perioperative respiratory complications in children following tonsillectomy with cold and hot dissection surgical techniques. Study Design The study was a retrospective cohort study. Setting Retrospective chart review was performed for all children presenting for a tonsillectomy at Texas Children’s Hospital from November 2015 to December 2017. Methods Pre- and intraoperative patient factors, including surgical technique with cold or hot dissection (electrocautery or radiofrequency ablation), and perioperative anesthetic factors were collected to determine the incidence of perioperative respiratory complications. Results A total of 2437 patients underwent a tonsillectomy at Texas Children’s Hospital from November 2015 to December 2017. The incidence of perioperative respiratory complications was 20.0% (n = 487). Sickle cell disease, cardiac disease, reactive airway disease, pulmonary disease, age >2 and <3 years, and obesity, defined as a body mass index >95th percentile for age, were significant for overall perioperative respiratory complications. There was no difference in the incidence of perioperative respiratory complications in children undergoing tonsillectomy by cold or hot dissection. Conclusion Perioperative respiratory complications following tonsillectomy are more affected by patient factors than surgical technique.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2348
Author(s):  
Leon Riehakainen ◽  
Chiara Cavallini ◽  
Paolo Armanetti ◽  
Daniele Panetta ◽  
Davide Caramella ◽  
...  

Non-invasive longitudinal imaging of osseointegration of bone implants is essential to ensure a comprehensive, physical and biochemical understanding of the processes related to a successful implant integration and its long-term clinical outcome. This study critically reviews the present imaging techniques that may play a role to assess the initial stability, bone quality and quantity, associated tissue remodelling dependent on implanted material, implantation site (surrounding tissues and placement depth), and biomarkers that may be targeted. An updated list of biodegradable implant materials that have been reported in the literature, from metal, polymer and ceramic categories, is provided with reference to the use of specific imaging modalities (computed tomography, positron emission tomography, ultrasound, photoacoustic and magnetic resonance imaging) suitable for longitudinal and non-invasive imaging in humans. The advantages and disadvantages of the single imaging modality are discussed with a special focus on preclinical imaging for biodegradable implant research. Indeed, the investigation of a new implant commonly requires histological examination, which is invasive and does not allow longitudinal studies, thus requiring a large number of animals for preclinical testing. For this reason, an update of the multimodal and multi-parametric imaging capabilities will be here presented with a specific focus on modern biomaterial research.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jae Heon Kim ◽  
Hong J. Lee ◽  
Yun Seob Song

A reliablein vivoimaging method to localize transplanted cells and monitor their viability would enable a systematic investigation of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information about the migration of transplanted cellsin vivoin the same host. Molecular imaging visualizes targeted cells in a living host, which enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics. Several types of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI with labeled nanoparticles for tracking transplanted stem cells in urology.


Sign in / Sign up

Export Citation Format

Share Document