scholarly journals Developing and Validating Nonlinear Height–Diameter Models for Major Tree Species of Ontario's Boreal Forests

2001 ◽  
Vol 18 (3) ◽  
pp. 87-94 ◽  
Author(s):  
Changhui Peng ◽  
Lianjun Zhang ◽  
Jinxun Liu

Abstract Six commonly used nonlinear growth functions were fitted to individual tree height-diameter data of nine major tree species in Ontario's boreal forests. A total of 22,571 trees was collected from new permanent sample plots across the northeast and northwest of Ontario.The available data for each species were split into two sets: the majority (90%) was used to estimate model parameters, and the remaining data (10%) were reserved to validate the models. The performance of the models was compared and evaluated by model, R2, mean difference, and mean absolute difference. The results showed that these six sigmoidal models were able to capture the height–diameter relationships and fit the data equally well, but produced different asymptote estimates. Sigmoidal models such as Chapman–Richards, Weibull, and Schnute functions provided the most satisfactory height predictions. The effect of model performance on tree volume estimation was also investigated. Tree volumes of different species were computed by Honer's volume equations using a range of diameters and the predicted tree total height from the six models. For trees with diameter less than 55 cm, the six height-diameter models produced very similar results for all species, while more differentiation among the models was observed for large-sized trees (e.g., diameters > 80 cm). North. J. Appl. For. 18:87–94.

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 905 ◽  
Author(s):  
Guerra-Hernández ◽  
Cosenza ◽  
Cardil ◽  
Silva ◽  
Botequim ◽  
...  

Estimating forest inventory variables is important in monitoring forest resources and mitigating climate change. In this respect, forest managers require flexible, non-destructive methods for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly available to measure three-dimensional (3D) canopy structure and to model forest structural attributes. The main objective of this study was to evaluate and compare the individual tree volume estimates derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA) techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly identified using DAP-based point clouds acquired from Unmanned Aerial Vehicles (UAV), representing accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression fit based on individual tree height and individual crown area derived from the ITC provided the following results: Model Efficiency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3 and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and 0.0004 m3) using DAP and ALS-based estimations, respectively. No significant difference was found between the observed value (field data) and volume estimation from ALS and DAP (p-value from t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate basal area or biomass stocks in Eucalyptus spp. plantations.


2005 ◽  
Vol 20 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Hailemariam Temesgen ◽  
Stephen J. Mitchell

Abstract An individual-tree mortality model was developed for major tree species in complex stands (multi-cohort, multiaged, and mixed species) of southeastern British Columbia (BC), Canada. Data for 29,773 trees were obtained from permanent sample plots established in BC. Average annual diameter increment and mortality rates ranged from 0.08 to 0.17 cm/year and from 0.3 to 2.6%, respectively. Approximately 70% of the trees were used for model development and 30% for model evaluation. After evaluating the model, all 29,773 trees were used to fit the final model. A generalized logistic model was used to relate mortality to tree size, competition, and relative position of trees in a stand. The evaluation test demonstrated that the model appears to be well behaved and robust for the tree species considered in this study. For the eight tree species, the average deviation between observed and predicted annual mortality rates varied from −0.5 to 0.7% in the test data. West. J. Appl. For. 20(2):101–109.


2007 ◽  
Vol 22 (3) ◽  
pp. 213-219 ◽  
Author(s):  
Hailemariam Temesgen ◽  
David W. Hann ◽  
Vincente J. Monleon

Abstract Selected tree height and diameter functions were evaluated for their predictive abilities for major tree species of southwest Oregon. Two sets of equations were evaluated. The first set included four base equations for estimating height as a function of individual tree diameter, and the remaining 16 equations enhanced the four base equations with alternative measures of stand density and relative position. The inclusion of the crown competition factor in larger trees (CCFL) and basal area (BA), which simultaneously indicates the relative position of a tree and stand density, into the base height–diameter equations increased the accuracy of prediction for all species. On the average, root mean square error values were reduced by 45 cm (15% improvement). On the basis of the residual plots and fit statistics, two equations are recommended for estimating tree heights for major tree species in southwest Oregon. The equation coefficients are documented for future use.


1996 ◽  
Vol 11 (4) ◽  
pp. 132-137 ◽  
Author(s):  
James A. Moore ◽  
Lianjun Zhang ◽  
Dean Stuck

Abstract Individual tree height-diameter equations were developed for ten major species in the inland Northwest. The Wykoff function in the Stand Prognosis Model and the Lundqvist function were fit to data which included many large-sized trees. The two models fit the data equally well for all species. Prediction results using the existing Prognosis equation, the refitted Wykoff function, and the Lundqvist function showed that the three models predicted similar heights for trees of small diameter. However, both the refitted Wykoff function and the Lundqvist function predicted larger tree heights for trees with dbh greater than 20 in. for most species. The estimated heights for tree diameters of 70 or 80 in. from the Lundqvist function were closer to the observed "asymptotic" tree heights than the other two. The Lundqvist function showed lower prediction errors for the validation data for the majority of the tree species, especially for large-sized trees. West. J. Appl. For. 11(4):132-137.


1995 ◽  
Vol 25 (9) ◽  
pp. 1455-1465 ◽  
Author(s):  
Shongming Huang ◽  
Stephen J. Titus

Based on a data set from 164 permanent sample plots, an age-independent individual tree diameter increment model is presented for white spruce (Piceaglauca (Moench) Voss) grown in the boreal mixed-species stands in Alberta. The model is age independent in that it does not explicitly require tree or stand age as input variables. Periodic diameter increment is modelled as a function of tree diameter at breast height, total tree height, relative competitiveness of the tree in the stand, species composition, stand density, and site productivity. Because data from permanent sample plots are considered time series and cross sectional, diagnostic techniques were applied to identify the model's error structure. Appropriate fit based on the identified error structure was accomplished using weighted nonlinear least squares with a first-order autoregressive process. Results show that (1) all model parameters are significant at α = 0.05 level, and (2) the plot of studentized residuals against predicted diameter increment shows no consistent underestimate or overestimate for diameter increment. The model was also tested on an independent data set representing the population on which it is to be used. Results show that the average prediction biases are not significant at α = 0.05 level, indicating that the model appropriately describes the data and performs well when predictions are made.


Author(s):  
R. Fang

Lidar has been widely used in tree aboveground biomass (AGB) estimation at plot or stand levels. Lidar-based AGB models are usually constructed with the ground AGB reference as the response variable and lidar canopy indices as predictor variables. Tree diameter at breast height (dbh) is the major variable of most allometric models for estimating reference AGB. However, lidar measurements are mainly related to tree vertical structure. Therefore, tree height-dbh allometric model residuals are expected to have a large impact on lidar-based AGB model performance. This study attempts to investigate sensitivity of lidar-based AGB model to the decreasing strength of height-dbh relationship using a Monte Carlo simulation approach. Striking decrease in <i>R</i><sup>2</sup> and increase in relative RMSE were found in lidar-based AGB model, as the variance of height-dbh model residuals grew. I, therefore, concluded that individual tree height-dbh model residuals fundamentally introduce errors to lidar-AGB models.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 936 ◽  
Author(s):  
Chen ◽  
Feng ◽  
Chen ◽  
Khan ◽  
Lian

Above-ground biomass (AGB) plays a pivotal role in assessing a forest’s resource dynamics, ecological value, carbon storage, and climate change effects. The traditional methods of AGB measurement are destructive, time consuming and laborious, and an efficient, relatively accurate and non-destructive AGB measurement method will provide an effective supplement for biomass calculation. Based on the real biophysical and morphological structures of trees, this paper adopted a non-destructive method based on terrestrial laser scanning (TLS) point cloud data to estimate the AGBs of multiple common tree species in boreal forests of China, and the effects of differences in bark roughness and trunk curvature on the estimation of the diameter at breast height (DBH) from TLS data were quantitatively analyzed. We optimized the quantitative structure model (QSM) algorithm based on 100 trees of multiple tree species, and then used it to estimate the volume of trees directly from the tree model reconstructed from point cloud data, and to calculate the AGBs of trees by using specific basic wood density values. Our results showed that the total DBH and tree height from the TLS data showed a good consistency with the measured data, since the bias, root mean square error (RMSE) and determination coefficient (R2) of the total DBH were −0.8 cm, 1.2 cm and 0.97, respectively. At the same time, the bias, RMSE and determination coefficient of the tree height were −0.4 m, 1.3 m and 0.90, respectively. The differences of bark roughness and trunk curvature had a small effect on DBH estimation from point cloud data. The AGB estimates from the TLS data showed strong agreement with the reference values, with the RMSE, coefficient of variation of root mean square error (CV(RMSE)), and concordance correlation coefficient (CCC) values of 17.4 kg, 13.6% and 0.97, respectively, indicating that this non-destructive method can accurately estimate tree AGBs and effectively calibrate new allometric biomass models. We believe that the results of this study will benefit forest managers in formulating management measures and accurately calculating the economic and ecological benefits of forests, and should promote the use of non-destructive methods to measure AGB of trees in China.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 429
Author(s):  
Jaime Briseño-Reyes ◽  
José Javier Corral-Rivas ◽  
Raúl Solis-Moreno ◽  
Jaime Roberto Padilla-Martínez ◽  
Daniel José Vega-Nieva ◽  
...  

Lack of knowledge of individual tree growth in species-rich, mixed forest ecosystems impedes their sustainable management. In this study, species-specific models for predicting individual diameter at breast height (dbh) and total tree height (h) growth were developed for 30 tree species growing in mixed and uneven-aged forest stands in Durango, Mexico. Growth models were also developed for all pine, all oaks, and all other species of the genus Arbutus (strawberry trees). A database of 55,158 trees with remeasurements of dbh and h of a 5-year growth period was used to develop the models. The data were collected from 217 stem-mapped plots located in the Sierra Madre Occidental (Mexico). Weighted regression was used to remove heteroscedasticity from the species-specific dbh and h growth models using a power function of the tree size independent variables. The final models developed in the present study to predict dbh and total tree height growth included size variables, site factors, and competition variables in their formulation. The developed models fitted the data well and explained between 98 and 99% and of the observed variation of dbh, and between 77 and 98% of the observed variation of total tree height for the studied species and groups of species. The developed models can be used for estimating the individual dbh and h growth for the analyzed species and can be integrated in decision support tools for management planning in these mixed forest ecosystems.


Author(s):  
R. Fang

Lidar has been widely used in tree aboveground biomass (AGB) estimation at plot or stand levels. Lidar-based AGB models are usually constructed with the ground AGB reference as the response variable and lidar canopy indices as predictor variables. Tree diameter at breast height (dbh) is the major variable of most allometric models for estimating reference AGB. However, lidar measurements are mainly related to tree vertical structure. Therefore, tree height-dbh allometric model residuals are expected to have a large impact on lidar-based AGB model performance. This study attempts to investigate sensitivity of lidar-based AGB model to the decreasing strength of height-dbh relationship using a Monte Carlo simulation approach. Striking decrease in &lt;i&gt;R&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt; and increase in relative RMSE were found in lidar-based AGB model, as the variance of height-dbh model residuals grew. I, therefore, concluded that individual tree height-dbh model residuals fundamentally introduce errors to lidar-AGB models.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2722
Author(s):  
Ján Merganič ◽  
Viliam Pichler ◽  
Erika Gömöryová ◽  
Peter Fleischer ◽  
Marián Homolák ◽  
...  

(1) Background: Boreal forests influence global carbon balance and fulfil multiple ecosystem services. Their vegetation growth and biomass are significantly affected by environmental conditions. In the present study we focused on one of the least accessible and least studied parts of the boreal region situated in the western part of Putorana plateau, Central Siberia (Lama and Keta lakes, Krasnoyarsk region), northern Russia. (2) Methods: We derived local height-diameter and crown radius-height models for six tree species. We used univariate correlation and multiple regression analyses to examine the relationships between tree biomass and environmental conditions. (3) Results: Total tree biomass stock (aboveground tree biomass + aboveground and buried deadwood) varied between 6.47 t/ha and 149 t/ha, while total deadwood biomass fluctuated from 0.06 to 21.45 t/ha. At Lama, biomass production decreased with elevation. At Keta, the relationship of biomass to elevation followed a U shape. Stand biomass changed with micro-terrain morphology and soil nutrient content, while the patterns were location-specific. (4) Conclusions: The majority of the derived models were significant and explained most of the variability in the relationships between tree diameter or crown radius and tree height. Micro-site environmental conditions had a substantial effect on tree biomass in the studied locations.


Sign in / Sign up

Export Citation Format

Share Document