Site Index Curves for Norway Spruce in Southern Ontario1

1989 ◽  
Vol 6 (1) ◽  
pp. 23-26 ◽  
Author(s):  
Andrew M. Gordon ◽  
Peter A. Williams ◽  
Edward P. Taylor

Abstract Four dominant or codominant Norway spruce trees from each of 55 sites were destructively sampled and the annual height growth determined by stem analysis. The sampled sites were stratified by soil textural class (coarse, medium, and fine) and depth to distinct mottling (0-16, 16-40, and 40 in.). Two sets of an-amorphic site index curves were constructed using a total age of 30 years (SI30), and breast height age of 25 years (SIBH25) as base ages. The mean SI30 from Ontario (53 ft) was found to be 17.8% higher than the mean values published from Vermont (45 ft) and currently used in Ontario. SIBH25 values had a range of 34.6 to 74.8 ft with a mean of 55.3 ft. Analysis of variance showed significant differences in SIBH25 due to soil texture and drainage class, and in years to breast height (BH) due to drainage class. SIBH25 was highest on sites with loamy soils and distinct mottling at 16-40 in. It took an average of 6.5 years for seedlings to reach BH with a range of 3 to 12 years. Years to BH was lowest on sites with sandy soils and those with distinct mottling below 40 in. North. J. Appl. For. 6(1):23-26, March 1989.

1988 ◽  
Vol 5 (2) ◽  
pp. 91-93 ◽  
Author(s):  
Timothy R. Bottenfield ◽  
David D. Reed

Abstract Five growth intercept measurements were correlated with site index of red pine plantations in the northern Lakes States. The growth intercept variables were obtained by direct field measurement or indirectly through interpolation of stem analysis data. Growth intercepts represented both time (age in years) and distance (height in feet) measurements. Growth intercepts representing time and the age at breast height are not recommended for use in young red pine plantations. The amount of height growth in the first five annual whorls above 5 and 8 ft were good predictors of site index. North. J. Appl. For. 5:91-93, June 1988.


1990 ◽  
Vol 7 (4) ◽  
pp. 183-186
Author(s):  
Peter A. Williams ◽  
Andrew M. Gordon ◽  
Edward P. Taylor

Abstract The objectives of this project were to develop site index curves and provide soil-site information for southern Ontario white pine and to compare that information to similar information on white pine from other regions and to information on Norway spruce in the study area. Sampling points were selected in unthinned white pine plantations and classified by sod textural class (course, medium, and free) and depth to distinct mottling (0-16, 16-40, and 40 + in.). Two sets of anamorphic site index curves were constructed from stem analysis data, using a total age of 30 years (SI30) and a breast height age of 25 years (SIBH25) as base ages. Significant differences due to soil factors were found in the number of years it took seedlings to reach breast height (BH) (mean = 6 5 years; range = 3 to 11 years) but not in SIBH25. Years to BH was significantly greater on clayey sites than those with loamy or sandy textures (6.1 vs. 5.0 and 4.9 years). White pine height growth in the study area compared favorably with white pine height growth in New England, Wisconsin, and Ohio. When white pine height growth was compared to the growth of Norway spruce in the study area, SIBH25 values were significantly higher for Norway spruce but years to BH were significantly lower for white pine. On poorly drained sites, site index values for white pine and Norway spruce were similar, but it took 2.2 years less for white pine to reach breast height (7.2 vs. 5.0 years). On imperfectly and well-drained sites, white pine seedlings took less time than Norway spruce to reach BH, but the site index of Norway spruce was much greater. North. J. Appl. For. 7:183-186, December 1990.


2019 ◽  
Vol 10 (2) ◽  
pp. 125-135
Author(s):  
Jusuf Musić ◽  
Velid Halilović ◽  
Jelena Knežević ◽  
Admir Avdagić ◽  
Aida Ibrahimspahić ◽  
...  

Background and Purpose: Bark thickness and its share in the volume of roundwood are the most important characteristics of the bark, particularly in the process of timber harvesting, and during scaling of processed logs. Therefore it is very important to have at disposal relatively accurate data regarding these characteristics of bark for particular tree species. The main goal of this paper is to investigate the thickness of the bark and its share in the volume of roundwood of Norway spruce. Materials and Methods: The research was carried out in the area of the Canton 10 of the Federation of Bosnia and Herzegovina and it encompassed 393 trees of Norway spruce from 10 cm to 115 cm of thickness at breast height. Measuring of the mean diameter and double thickness of bark was conducted by section method. In total, 4,647 diameters and bark thicknesses were measured in different relative lengths of stems or in average 10.6 measurements per one stem. Results: As an optimal model for the evaluation of double thickness of the bark of Norway spruce depending on mean diameter of roundwood the function with designated determination coefficient of 0.7142 was selected. The obtained results have confirmed the previously defined relations of investigate characteristics, which are as following: a) with the increase of mean diameter of roundwood (section) double bark thickness is increased from 9.26 mm (thickness class 12.5 cm) to 31.65 mm (thickness class 92.5 cm); b) with the increase of mean diameter of roundwood the share of bark in its volume decreased from 14.26% (thickness class 12.5 cm) to 6.73% (thickness class 92.5 cm). Conclusions: By the actual method of estimating bark thickness or the share of bark in the volume of roundwood of Norway spruce in the forestry of the Federation of Bosnia and Herzegovina a significant error was created which increases with the increase of mean diameter. The obtained results point to the necessity of investigation of these bark characteristics in Bosnia and Herzegovina and represent an inevitable starting point for making adequate tables of bark thickness and its percentage share in the volume of roundwood of Norway spruce.


1989 ◽  
Vol 4 (3) ◽  
pp. 85-88
Author(s):  
James L. Vander Ploeg ◽  
James A. Moore

Abstract Stem analysis data from Douglas-fir (Pseudotsuga menziesii) collected throughout the inland Northwest were used for testing height growth and site index equations. The equations performed well in northern and central Idaho, northeast Oregon, and northeast Washington on vegetative types similar to those sampled in model development. However, if the equations were applied on drier sites outside the original geographic study area, overestimates of height growth and under-estimates of site index could result. Therefore, revised height growth and site index equations are presented for western Montana and central Washington. West. J. Appl. For. 4(3):85-88, July 1989.


1990 ◽  
Vol 7 (1) ◽  
pp. 27-30 ◽  
Author(s):  
James H. Brown ◽  
Charles A. Duncan

Abstract Growth intercept (GI) techniques were evaluated for estimating site quality in red pine stands planted on old-field sites in the unglaciated Western and Central Allegheny Plateau regions of Ohio. Correlations between height growth of trees below breast height (BH) and height growth above BH were not statistically significant. Site index estimates were made using age at BH and height from BH to the growing tip. Three-year and 5-year growth beginning three internodes above the BH annual increment and 10-year growth beginning one internode above BH were more significantly correlated with height than were intercepts beginning at BH. In equations developed for predicting site index, 3-, 5-, and 10-year intercepts in combination with age accounted for 64 to 80% of the variation in tree heights. Combining thickness of the A soil horizon with GI and age statistically increased the variation accounted for in the 3- and 5-year GI equations; however, for field use, the improvement in accuracy was not sufficient to justify making the additional soil measurement. North. J. Appl. For. 7(1):27-30, March 1990.


2004 ◽  
Vol 19 (3) ◽  
pp. 154-159 ◽  
Author(s):  
G. Geoff Wang ◽  
Shongming Huang ◽  
David J. Morgan

Abstract Based on the provincial stem analysis and permanent sample plot (PSP) data of 1,580 felled dominant and codominant trees, height growth patterns of lodgepole pine were compared among the three major natural subregions [Sub-Alpine (SAL), Upper Foothills (UFH), and Lower Foothills (LFH)] in Alberta. The comparison used the ratio of heights at 70 and 30 years of breast height age (Z ratio) as a quantitative measure of height growth pattern (i.e., the response variable), site index (height at breast height age of 50 years) as the covariate, and natural subregion as the factor. Results indicated that: (1) the height growth pattern in the SAL natural subregion was significantly different from other natural subregions; and (2) no significant differences in height growth pattern were found between other natural subregions. Two polymorphic height and site index curves were developed: one for the SAL natural subregion and the other for the UFH and LFH natural subregions. Comparisons between the two curves and the previously developed provincial curve indicated that, for the same site index, trees in the SAL subregion grow consistently slower after 50 years. When the provincial height and site index curve was applied to the SAL natural subregion, large differences (≤14%) in gross volume estimation were found. However, volume estimation differences were very small (<2%) when the provincial curve was applied to the other two natural subregions. It is recommended that the natural subregion-based curves should be used for predicting lodgepole pine site index or height at any age in the SAL natural subregion. West. J. Appl. For. 19(3):154–159.


1985 ◽  
Vol 9 (3) ◽  
pp. 166-169 ◽  
Author(s):  
Ralph L. Amateis ◽  
Harold E. Burkhart

Abstract Stem analysis data collected from dominant and codominant loblolly pine (Pinus taeda) trees in cutover, site-prepared plantations were used to develop site index curves. The data were collected over much of the natural range of loblolly pine. A separable differential equation which expresses height growth as a function of both height and age was used to develop the site index curves. These site index curves should be applicable to loblolly pine plantations on cutover, site-prepared lands through much of the South.1


2001 ◽  
Vol 77 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Willard H. Carmean ◽  
G. Hazenberg ◽  
G. P. Niznowski

Stem-analysis data from dominant and codominant trees were collected from 383 plots located in fully stocked, even-aged, undisturbed mature jack pine stands. Separate site index curves were independently formulated for four regions of northern Ontario using the Newnham constrained nonlinear regression model; these formulations were used for comparing regional site index curves at three levels of site index (10 m, 15 m and 20 m).Comparisons showed that no significant differences existed between the four regional curves as well as with previously published site index curves for the North Central Region. Each of the four regions had similar polymorphic height-growth patterns; therefore, data for the four regions were combined and a single formulation was used to develop a polymorphic set of site index curves for all of northern Ontario. We found that poor sites in each region had almost linear height growth up to 100 years breast-height age, but for each region height growth became more curvilinear with increasing site index. The recommended site index curves for northern Ontario are based on a formulation using only data from plots 100 years and less but this formulation was not significantly different from a formulation using only data from plots 80 years and less, or a formulation that included all data from plots older than 100 years breast-height age.Comparisons were made between our northern Ontario curves and other jack pine site index curves for Ontario as well as curves for other areas of Canada and the United States. These comparisons generally showed considerable older age differences. Reasons for these differences are uncertain but could be due to differences in the amount and kind of data used for these other curves, could be due to differences in analytical methods, or could be due to regional differences in climate, soil and topography. Key words: site quality evaluation, polymorphic height growth, regional site index curves, site index prediction equations, comparisons among site index curves.


1996 ◽  
Vol 26 (10) ◽  
pp. 1822-1827 ◽  
Author(s):  
Vitezslav Dvorak ◽  
Magda Oplustilova ◽  
Dalibor Janous

The relationship between leaf biomass and sapwood area was investigated in a 35-year-old Norway spruce (Piceaabies (L.) Karst.) stand in mountainous conditions. Fifteen trees were destructively sampled to determine the needle biomass in several needle age-classes and whorls and the corresponding sapwood areas at the whorl branch bases and in stems at breast height. Leaf biomass/sapwood area ratio and specific leaf biomass (g•mm−2) were calculated for different needle age-classes and also for different positions in the vertical profile of the crown. The leaf biomass/sapwood area ratios were described by linear regression with a high coefficient of determination. Specific leaf biomass analysed in whorl branches was highest in the upper whorls but was decreasing downward through the profile; remained stable in the middle crown layer; and decreased again in the lower crown parts. Specific leaf biomass assessments for stems showed the largest and most increasing values in the youngest three needle age-classes followed by a decreasing trend of the specific leaf biomass in older needle age-classes. The mean values of specific leaf biomass were 1.08 g•mm−2 for branches and 1.02 g•mm−2 for stems. The results of our study are consistent with the "pipe model theory."


1998 ◽  
Vol 15 (3) ◽  
pp. 146-153 ◽  
Author(s):  
Willard H. Carmean ◽  
Janjun Li

Abstract Past harvesting in Northwest Ontario has produced increased regeneration and increased forest areas supporting trembling aspen stands, resulting in greatly increased utilization of aspen. Thus there is a critical need to accurately estimate site quality and growth and yield for trembling aspen and for identifying productive sites where more intensive aspen forest management can be practiced. Soil-site relations were studied using 95 plots located in mature, fully stocked, evenaged, undisturbed trembling aspen stands. On each plot site index (SIBH50) estimation was based on stem analysis of three to five dominant and codominant trees. Each plot also had soil profile descriptions and soil analyses for four major soil horizons (A, B, BC, C). Plots were located on morainal soils, glaciofluvial soils, and lacustrine soils. Multiple regression analyses showed: (a) for morainal soils site index was correlated (adj R² = 0.63) to depth to a root restricting layer, silt plus clay content of the A horizon, and coarse fragment content of the C horizon; (b) for glaciofluvial soils site index was correlated (adj R² = 0.64) to depth to a root restricting layer and to drainage class: and (c) for lacustrine soils site index was correlated (adj R² = 0.65) to depth to mottles and to clay content of the C horizon. Results are applicable only to medium and good sites where mature, fully stocked, merchantable trembling aspen stands commonly occur. North. J. Appl. For. 15(3):146-153.


Sign in / Sign up

Export Citation Format

Share Document