scholarly journals 56. TUMOR-HOMING STEM CELL THERAPY INHIBITS THE PROGRESSION OF BREAST CANCER LEPTOMENINGEAL CARCINOMATOSIS

2020 ◽  
Vol 2 (Supplement_2) ◽  
pp. ii11-ii12
Author(s):  
Wulin Jiang ◽  
Alain Valdivia ◽  
Alison Mercer-Smith ◽  
Carey Anders ◽  
Shawn Hingtgen

Abstract INTRODUCTION Leptomeningeal carcinomatosis remains one of the most lethal forms of central nervous system metastasis, with a median survival of only 4 months. Effective new therapies are urgently needed to treat this highly aggressive cancer. In this study, we used models of both prophylactic and established leptomeningeal disease to investigate the efficacy of engineered tumor-homing neural stem cells (NSCs) therapy for breast cancer leptomeningeal carcinomatosis. METHODS Personalized NSC carriers were created using Sox2 overexpression to transdifferentiate human fibroblasts into induced NSCs (iNSCs) that home to cancer cells and carry therapeutic agents to induce tumor kill. Leptomeningeal models were created by engineering MDA-MB231-Br human breast cancer cells with fluorescent and bioluminescent reporters, then using intracisternal injection to inoculate Nude mice with the tumor cells. iNSC therapy was evaluated by infusing iNSCs releasing the pro-apoptotic agent TRAIL into the lateral ventricle of mice either 1 week prior to or 3 days after tumor inoculation for prophylactic or established tumor treatment respectively. Tumor progression in the brain and spinal cord was monitored by serial bioluminescence imaging (BLI). RESULTS Serial BLI showed that intracerebroventricular (ICV) iNSC-TRAIL therapy reduced the volume of metastatic tumor burden 99.49% in the brain and 99.80% in the spine within 2 weeks post-infusion and extended survival from 24 to 42 days. Additionally, prophylactic iNSC-TRAIL therapy delivered ICV markedly delayed tumor development, with tumors in the brain remaining >1000-fold smaller than control through 1-month post-treatment, below the limit of detection in the spinal cord through 1 month, and eliminating mortality through 50 days post-therapy. CONCLUSION These data suggest that iNSC therapy could be a promising treatment option for breast cancer patients with leptomeningeal carcinomatosis.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii86-ii87
Author(s):  
Wulin Jiang ◽  
Alain Valdivia ◽  
Alison Mercer-Smith ◽  
Carey Anders ◽  
Shawn Hingtgen

Abstract INTRODUCTION Breast cancer brain metastasis, including leptomeningeal carcinomatosis (LC), remains one of the most lethal CNS diseases. New therapies are urgently needed to treat this highly aggressive disease. Here we used models of both breast cancer brain parenchymal metastasis and leptomeningeal metastasis to investigate the efficacy of engineered tumor-homing neural stem cells (NSCs) therapy. METHODS Personalized NSCs were created using Sox2 overexpression to transdifferentiate human fibroblasts into induced NSCs (iNSCs), followed by genetic engineering to enable iNSCs to secrete cytotoxic TRAIL (iNSC-TRAIL). For the parenchymal metastasis study, iNSC-TRAIL therapy was infused intracerebroventricularly (ICV) into Nude mice bearing established intracranial MDA-MB-231-Br human breast cancer cells expressing fluorescent and bioluminescent reporters. For LC studies, we established the disease model by inoculating Nude mice with MDA-MB-231-Br tumor cells via intracisternal infusion. iNSC-TRAIL therapy was evaluated by infusing therapy ICV either 1 week prior to or 3 days after tumor inoculation to mirror prophylactic or established tumor treatment, respectively. Tumor progression in the brain and spine was monitored by serial bioluminescence imaging (BLI), and survival was analyzed. RESULTS Serial BLI showed ICV-infused iNSC-TRAIL reduced parenchymal tumor volumes by 72% 3 weeks post-ICV infusion, and extended median survival from 37 to 52 days. Testing iNSC-TRAIL therapy against established LC tumors, serial BLI showed ICV iNSC-TRAIL therapy reduced established tumors 196-fold in the brain and 500-fold in the spine within 2 weeks post-infusion, while extending median survival from 25 to 47 days. In the prophylactic LC model, iNSC-TRAIL therapy markedly delayed tumor development with tumors in the brain remaining > 1000-fold smaller than control, and tumors in the spine below the limit of detection through 1 month post-treatment. The therapy also eliminated mortality through 50 days post-therapy. CONCLUSION These data suggest iNSC therapy could be a promising treatment option for breast cancer brain metastasis patients.


2020 ◽  
Vol 39 (3) ◽  
pp. 711-720 ◽  
Author(s):  
Mari Hosonaga ◽  
Hideyuki Saya ◽  
Yoshimi Arima

Abstract Metastasis of cancer cells to the brain occurs frequently in patients with certain subtypes of breast cancer. In particular, patients with HER2-positive or triple-negative breast cancer are at high risk for the development of brain metastases. Despite recent advances in the treatment of primary breast tumors, the prognosis of breast cancer patients with brain metastases remains poor. A better understanding of the molecular and cellular mechanisms underlying brain metastasis might be expected to lead to improvements in the overall survival rate for these patients. Recent studies have revealed complex interactions between metastatic cancer cells and their microenvironment in the brain. Such interactions result in the activation of various signaling pathways related to metastasis in both cancer cells and cells of the microenvironment including astrocytes and microglia. In this review, we focus on such interactions and on their role both in the metastatic process and as potential targets for therapeutic intervention.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i13-i14
Author(s):  
Alison Mercer-Smith ◽  
Wulin Jiang ◽  
Juli Bago ◽  
Simon Khagi ◽  
Carey Anders ◽  
...  

Abstract INTRODUCTION: Non-small cell lung cancer (NSCLC) and breast cancer are the most common cancers that metastasize to the brain. New therapies are needed to seek out and eradicate metastases. Genetically engineered neural stem cells (NSCs) have shown unique tumor-homing capacity, allowing them to deliver cytotoxic proteins directly to tumors. An ideal NSC drug carrier would be readily available and autologous. We have transdifferentiated human fibroblasts into induced NSCs (hiNSCs) that home to tumors and engineered the hiNSCs to release the cytotoxic protein TRAIL. Here we used intracerebroventricular (ICV) injections to deliver hiNSCs to metastatic foci. METHODS: We performed an in vitro efficacy co-culture assay, used in vivo studies to determine the migration, persistence, and efficacy of therapeutic hiNSCs against H460 NSCLC and triple-negative breast cancer MB231-Br tumors in the brain. Following the establishment of tumors in the brains of nude mice, hiNSCs were injected directly into the tumor or the ventricle contralateral to the site of tumor. The migration and persistence of hiNSCs was investigated by following the bioluminescence of the hiNSCs. The therapeutic efficacy of the hiNSCs was determined by following the bioluminescece of the tumor. RESULTS/CONCLUSION: Co-culture results demonstrated that hiNSC therapy reduced the viability of H460 and MB231-Br up to 75% and 99.8% respectively compared to non-treated controls. ICV-administered hiNSC serial imaging show that cells persisted for more than one week. Fluorescent analysis of tissue sections showed that hiNSCs co-localized with lateral and a contralateral tumors within 7 days. Using H460 and MB231-Br models, kinetic tracking of intracranial tumor volumes showed intratumoral or ICV-injected therapeutic hiNSCs reduced the growth rate of brain tumors by 31-fold and 3-fold, respectively. This work demonstrates for the first time that we can effectively deliver personalized cytotoxic tumor-homing cells through the ventricles to target brain metastases.


2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1119
Author(s):  
Ivonne Nel ◽  
Erik W. Morawetz ◽  
Dimitrij Tschodu ◽  
Josef A. Käs ◽  
Bahriye Aktas

Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3143
Author(s):  
Sergey E. Parfenyev ◽  
Sergey V. Shabelnikov ◽  
Danila Y. Pozdnyakov ◽  
Olga O. Gnedina ◽  
Leonid S. Adonin ◽  
...  

Breast cancer is the most frequently diagnosed malignant neoplasm and the second leading cause of cancer death among women. Epithelial-to-mesenchymal Transition (EMT) plays a critical role in the organism development, providing cell migration and tissue formation. However, its erroneous activation in malignancies can serve as the basis for the dissemination of cancer cells and metastasis. The Zeb1 transcription factor, which regulates the EMT activation, has been shown to play an essential role in malignant transformation. This factor is involved in many signaling pathways that influence a wide range of cellular functions via interacting with many proteins that affect its transcriptional functions. Importantly, the interactome of Zeb1 depends on the cellular context. Here, using the inducible expression of Zeb1 in epithelial breast cancer cells, we identified a substantial list of novel potential Zeb1 interaction partners, including proteins involved in the formation of malignant neoplasms, such as ATP-dependent RNA helicase DDX17and a component of the NURD repressor complex, CTBP2. We confirmed the presence of the selected interactors by immunoblotting with specific antibodies. Further, we demonstrated that co-expression of Zeb1 and CTBP2 in breast cancer patients correlated with the poor survival prognosis, thus signifying the functionality of the Zeb1–CTBP2 interaction.


2012 ◽  
Vol 11 (11) ◽  
pp. 1457-1467 ◽  
Author(s):  
Olesya Chornoguz ◽  
Alexei Gapeev ◽  
Michael C. O'Neill ◽  
Suzanne Ostrand-Rosenberg

The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii− cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii− cells, we generated MHC II vaccines to activate cancer patients' T cells. The vaccines are Ii− tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii− MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii− cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii− and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii− cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii− cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Yifan Wang ◽  
Ruocen Liao ◽  
Xingyu Chen ◽  
Xuhua Ying ◽  
Guanping Chen ◽  
...  

Abstract Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.


Sign in / Sign up

Export Citation Format

Share Document