scholarly journals A useful approach to sensitivity and predictability studies in geophysical fluid dynamics: conditional non-linear optimal perturbation

2019 ◽  
Vol 7 (1) ◽  
pp. 214-223 ◽  
Author(s):  
Qiang Wang ◽  
Mu Mu ◽  
Guodong Sun

Abstract In atmospheric and oceanic studies, it is important to investigate the uncertainty of model solutions. The conditional non-linear optimal perturbation (CNOP) method is useful for addressing the uncertainty. This paper reviews the development of the CNOP method and its computational aspects in recent years. Specifically, the CNOP method was first proposed to investigate the effects of the optimal initial perturbation on atmosphere and ocean model results. Then, it was extended to explore the influences of the optimal parameter perturbation, model tendency perturbation and boundary condition perturbation. To obtain solutions to these optimal perturbations, four kinds of optimization approaches were developed: the adjoint-based method, the adjoint-free method, the intelligent optimization method and the unconstrained optimization method. We illustrate the calculation process of each method and its advantages and disadvantages. Then, taking the Zebiak–Cane model as an example, we compare the CNOPs related to initial conditions (CNOP-Is) calculated by the above four methods. It was found that the dominant structures of the CNOP-Is for different methods are similar, although some differences in details exist. Finally, we discuss the necessity and possible direction for designing a more effective optimization approach related to the CNOP in the future.

2014 ◽  
Vol 627 ◽  
pp. 121-124
Author(s):  
M. Abdi ◽  
I. Ashcroft ◽  
R.D. Wildman

Iso-XFEM is an evolutionary-based topology optimization method which couples the extended finite element method (X-FEM) with an isoline/isosurface optimization approach, enabling a smooth and accurate representation of the design boundary in a fixed-grid finite element mesh. This paper investigates the application of the Iso-XFEM method to the topology optimization of structures which experience large deformation. The total Lagrangian formulation of the finite element method is employed to model the geometrically non-linear behaviour and equilibrium is found by implementing the Newton-Raphson method in each evolution. A cantilever beam is considered as a test case and the Iso-XFEM solutions obtained from linear and non-linear designs are compared with bi-directional evolutionary structural optimization (BESO) solutions.


2011 ◽  
Vol 18 (6) ◽  
pp. 883-893 ◽  
Author(s):  
G. Sun ◽  
M. Mu

Abstract. Human activities and climate change are important factors that affect grassland ecosystems. A new optimization approach, the approach of conditional nonlinear optimal perturbation (CNOP) related to initial and parameter perturbations, is employed to explore the nonlinearly combined impacts of human activities and climate change on a grassland ecosystem using a theoretical grassland model. In our study, it is assumed that the initial perturbations and parameter perturbations are regarded as human activities and climate change, respectively. Numerical results indicate that the climate changes causing the maximum effect in the grassland ecosystem are different under disparate intensities of human activities. This implies the pattern of climate change is very critical to the maintenance or degradation of grassland ecosystem in light of high intensity of human activities and that the grassland ecosystem should be rationally managed when the moisture index decreases. The grassland ecosystem influenced by the nonlinear combination of human activities and climate change undergoes abrupt change, while the grassland ecosystem affected by other types of human activities and climate change fails to show the abrupt change under a certain range of perturbations with the theoretical model. The further numerical analyses also indicate that the growth of living biomass and the evaporation from soil surface shaded by the wilted biomass may be crucial factors contributing to the abrupt change of the grassland equilibrium state within the theoretical model.


Author(s):  
Turang Ahadi-Oskui ◽  
George Tsatsaronis

The paper presents two different optimization methods for the cost-effective design of energy conversion systems. Starting point of the optimization is a complex superstructure that allows several alternative design specifications for a combined-cycle-based cogeneration plant to be studied. Depending on the user specified demands for electricity and process steam, the optimization algorithm performs a simultaneous structural and process variable optimization of the design, to minimize the levelized total costs of the plant products. Mathematical programming and specialized genetic algorithms are used as optimization algorithms. These do not only differ largely in their optimization approach but also have different requirements for the modeling of the superstructure. Several optimization cases are presented to examine the applicability of both algorithms on the present optimization problem. A concluding comparison reveals the advantages and disadvantages of each optimization method.


2020 ◽  
Vol 20 (14) ◽  
pp. 1389-1402 ◽  
Author(s):  
Maja Zivkovic ◽  
Marko Zlatanovic ◽  
Nevena Zlatanovic ◽  
Mladjan Golubović ◽  
Aleksandar M. Veselinović

In recent years, one of the promising approaches in the QSAR modeling Monte Carlo optimization approach as conformation independent method, has emerged. Monte Carlo optimization has proven to be a valuable tool in chemoinformatics, and this review presents its application in drug discovery and design. In this review, the basic principles and important features of these methods are discussed as well as the advantages of conformation independent optimal descriptors developed from the molecular graph and the Simplified Molecular Input Line Entry System (SMILES) notation compared to commonly used descriptors in QSAR modeling. This review presents the summary of obtained results from Monte Carlo optimization-based QSAR modeling with the further addition of molecular docking studies applied for various pharmacologically important endpoints. SMILES notation based optimal descriptors, defined as molecular fragments, identified as main contributors to the increase/ decrease of biological activity, which are used further to design compounds with targeted activity based on computer calculation, are presented. In this mini-review, research papers in which molecular docking was applied as an additional method to design molecules to validate their activity further, are summarized. These papers present a very good correlation among results obtained from Monte Carlo optimization modeling and molecular docking studies.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Prasad G. Thoppil ◽  
Sergey Frolov ◽  
Clark D. Rowley ◽  
Carolyn A. Reynolds ◽  
Gregg A. Jacobs ◽  
...  

AbstractMesoscale eddies dominate energetics of the ocean, modify mass, heat and freshwater transport and primary production in the upper ocean. However, the forecast skill horizon for ocean mesoscales in current operational models is shorter than 10 days: eddy-resolving ocean models, with horizontal resolution finer than 10 km in mid-latitudes, represent mesoscale dynamics, but mesoscale initial conditions are hard to constrain with available observations. Here we analyze a suite of ocean model simulations at high (1/25°) and lower (1/12.5°) resolution and compare with an ensemble of lower-resolution simulations. We show that the ensemble forecast significantly extends the predictability of the ocean mesoscales to between 20 and 40 days. We find that the lack of predictive skill in data assimilative deterministic ocean models is due to high uncertainty in the initial location and forecast of mesoscale features. Ensemble simulations account for this uncertainty and filter-out unconstrained scales. We suggest that advancements in ensemble analysis and forecasting should complement the current focus on high-resolution modeling of the ocean.


2010 ◽  
Vol 661 ◽  
pp. 446-481 ◽  
Author(s):  
YUE YANG ◽  
D. I. PULLIN

For a strictly inviscid barotropic flow with conservative body forces, the Helmholtz vorticity theorem shows that material or Lagrangian surfaces which are vortex surfaces at time t = 0 remain so for t > 0. In this study, a systematic methodology is developed for constructing smooth scalar fields φ(x, y, z, t = 0) for Taylor–Green and Kida–Pelz velocity fields, which, at t = 0, satisfy ω·∇φ = 0. We refer to such fields as vortex-surface fields. Then, for some constant C, iso-surfaces φ = C define vortex surfaces. It is shown that, given the vorticity, our definition of a vortex-surface field admits non-uniqueness, and this is presently resolved numerically using an optimization approach. Additionally, relations between vortex-surface fields and the classical Clebsch representation are discussed for flows with zero helicity. Equations describing the evolution of vortex-surface fields are then obtained for both inviscid and viscous incompressible flows. Both uniqueness and the distinction separating the evolution of vortex-surface fields and Lagrangian fields are discussed. By tracking φ as a Lagrangian field in slightly viscous flows, we show that the well-defined evolution of Lagrangian surfaces that are initially vortex surfaces can be a good approximation to vortex surfaces at later times prior to vortex reconnection. In the evolution of such Lagrangian fields, we observe that initially blob-like vortex surfaces are progressively stretched to sheet-like shapes so that neighbouring portions approach each other, with subsequent rolling up of structures near the interface, which reveals more information on dynamics than the iso-surfaces of vorticity magnitude. The non-local geometry in the evolution is quantified by two differential geometry properties. Rolled-up local shapes are found in the Lagrangian structures that were initially vortex surfaces close to the time of vortex reconnection. It is hypothesized that this is related to the formation of the very high vorticity regions.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 126 ◽  
Author(s):  
Lina Aboulmouna ◽  
Shakti Gupta ◽  
Mano Maurya ◽  
Frank DeVilbiss ◽  
Shankar Subramaniam ◽  
...  

The goal-oriented control policies of cybernetic models have been used to predict metabolic phenomena such as the behavior of gene knockout strains, complex substrate uptake patterns, and dynamic metabolic flux distributions. Cybernetic theory builds on the principle that metabolic regulation is driven towards attaining goals that correspond to an organism’s survival or displaying a specific phenotype in response to a stimulus. Here, we have modeled the prostaglandin (PG) metabolism in mouse bone marrow derived macrophage (BMDM) cells stimulated by Kdo2-Lipid A (KLA) and adenosine triphosphate (ATP), using cybernetic control variables. Prostaglandins are a well characterized set of inflammatory lipids derived from arachidonic acid. The transcriptomic and lipidomic data for prostaglandin biosynthesis and conversion were obtained from the LIPID MAPS database. The model parameters were estimated using a two-step hybrid optimization approach. A genetic algorithm was used to determine the population of near optimal parameter values, and a generalized constrained non-linear optimization employing a gradient search method was used to further refine the parameters. We validated our model by predicting an independent data set, the prostaglandin response of KLA primed ATP stimulated BMDM cells. We show that the cybernetic model captures the complex regulation of PG metabolism and provides a reliable description of PG formation.


1996 ◽  
Vol 118 (4) ◽  
pp. 733-740 ◽  
Author(s):  
Eungsoo Shin ◽  
D. A. Streit

A new spring balancing technique, called a two-phase optimization method, is presented. Phase 1 uses harmonic synthesis to provide a system configuration which achieves an approximation to a desired dynamic system response. Phase 2 uses results of harmonic synthesis as initial conditions for dynamic system optimization. Optimization techniques compensate for nonlinearities in machine dynamics. Example applications to robot manipulators and to walking machine legs are presented and discussed.


This manuscript covers the analytical and optimization based techniques for the performance assessment of 3-phase IAG furnishing 3-phase and 1-phase load. It examines initially the basic phenomenon of voltage build-up and then the steady state performance of 3-phase IAG furnishing 3-phase and 1-phase load. This preliminary study forms the foundation or basis of the design of future controllers. The conventional techniques and MATLAB based optimization technique fsolve is elaborated in detail along-with advantages and disadvantages for attaining the solution of simultaneous non linear equation. The fsolve technique is recommended for the solution of non-linear equations due to its advantages over conventional method.


Sign in / Sign up

Export Citation Format

Share Document