scholarly journals Disseminated gonococcal infection complicated by prosthetic joint infection: case report and genomic and phylogenetic analysis

Author(s):  
Osakpolor Ogbebor ◽  
Tatum D Mortimer ◽  
Kyra Fryling ◽  
Jessica J Zhang ◽  
Nitin Bhanot ◽  
...  

Abstract Neisseria gonorrhoeae infections have been increasing globally, with prevalence rising across age groups. Here, we report a case of disseminated gonococcal infection (DGI) involving a prosthetic joint, and we use whole-genome sequencing to characterize resistance genes, putative virulence factors, and the phylogenetic lineage of the infecting isolate. We review the literature on sequence-based prediction of antibiotic resistance and factors that contribute to risk for DGI. We argue for routine sequencing and reporting of invasive gonococcal infections to aid in determining whether an invasive gonococcal infection is sporadic or part of an outbreak and to accelerate understanding of the genetic features of N. gonorrhoeae that contribute to pathogenesis.

2017 ◽  
Vol 2 (3) ◽  
pp. 160-162 ◽  
Author(s):  
Ian Gassiep ◽  
Bradley Gilpin ◽  
Joel Douglas ◽  
David Siebert

Abstract. Neisseria gonorrhoea is a common sexually transmitted infection worldwide. Disseminated gonococcal infection is an infrequent presentation and rarely can be associated with septic arthritis. Incidence of this infection is rising, both internationally and in older age groups. We present the first documented case of N. gonorrhoea prosthetic joint infection which was successfully treated with laparoscopic debridement and antimicrobial therapy.


2019 ◽  
Vol 4 (1) ◽  
pp. 16-19 ◽  
Author(s):  
Staffan Tevell ◽  
Sharmin Baig ◽  
Åsa Nilsdotter-Augustinsson ◽  
Marc Stegger ◽  
Bo Söderquist

Abstract. In current diagnostic criteria for implant-associated bone- and joint infections, phenotypically identical low-virulence bacteria in two intraoperative cultures are usually required. Using whole-genome sequencing, we have further characterized three phenotypically different Staphylococcus capitis isolated from one prosthetic joint infection, highlighting the challenges in defining microbiological criteria for low-virulence prosthetic joint infections.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Geetha Nagaraj ◽  
Vandana Govindan ◽  
Feroze Ganaie ◽  
V. T. Venkatesha ◽  
Paulina A. Hawkins ◽  
...  

Globally, India has a high burden of pneumococcal disease, and pneumococcal conjugate vaccine (PCV) has been rolled out in different phases across the country since May 2017 in the national infant immunization programme (NIP). To provide a baseline for assessing the impact of the vaccine on circulating pneumococci in India, genetic characterization of pneumococcal isolates detected prior to introduction of PCV would be helpful. Here we present a population genomic study of 480 Streptococcus pneumoniae isolates collected across India and from all age groups before vaccine introduction (2009–2017), including 294 isolates from pneumococcal disease and 186 collected through nasopharyngeal surveys. Population genetic structure, serotype and antimicrobial susceptibility profile were characterized and predicted from whole-genome sequencing data. Our findings revealed high levels of genetic diversity represented by 110 Global Pneumococcal Sequence Clusters (GPSCs) and 54 serotypes. Serotype 19F and GPSC1 (CC320) was the most common serotype and pneumococcal lineage, respectively. Coverage of PCV13 (Pfizer) and 10-valent Pneumosil (Serum Institute of India) serotypes in age groups of ≤2 and 3–5 years were 63–75 % and 60–69 %, respectively. Coverage of PPV23 (Merck) serotypes in age groups of ≥50 years was 62 % (98/158). Among the top five lineages causing disease, GPSC10 (CC230), which ranked second, is the only lineage that expressed both PCV13 (serotypes 3, 6A, 14, 19A and 19F) and non-PCV13 (7B, 13, 10A, 11A, 13, 15B/C, 22F, 24F) serotypes. It exhibited multidrug resistance and was the largest contributor (17 %, 18/103) of NVTs in the disease-causing population. Overall, 42 % (202/480) of isolates were penicillin-resistant (minimum inhibitory concentration ≥0.12 µg ml−1) and 45 % (217/480) were multidrug-resistant. Nine GPSCs (GPSC1, 6, 9, 10, 13, 16, 43, 91, 376) were penicillin-resistant and among them six were multidrug-resistant. Pneumococci expressing PCV13 serotypes had a higher prevalence of antibiotic resistance. Sequencing of pneumococcal genomes has significantly improved our understanding of the biology of these bacteria. This study, describing the pneumococcal disease and carriage epidemiology pre-PCV introduction, demonstrates that 60–75 % of pneumococcal serotypes in children ≤5 years are covered by PCV13 and Pneumosil. Vaccination against pneumococci is very likely to reduce antibiotic resistance. A multidrug-resistant pneumococcal lineage, GPSC10 (CC230), is a high-risk clone that could mediate serotype replacement.


2020 ◽  
Vol 58 (4) ◽  
Author(s):  
Ellen N. Kersh ◽  
Cau D. Pham ◽  
John R. Papp ◽  
Robert Myers ◽  
Richard Steece ◽  
...  

ABSTRACT U.S. gonorrhea rates are rising, and antibiotic-resistant Neisseria gonorrhoeae (AR-Ng) is an urgent public health threat. Since implementation of nucleic acid amplification tests for N. gonorrhoeae identification, the capacity for culturing N. gonorrhoeae in the United States has declined, along with the ability to perform culture-based antimicrobial susceptibility testing (AST). Yet AST is critical for detecting and monitoring AR-Ng. In 2016, the CDC established the Antibiotic Resistance Laboratory Network (AR Lab Network) to shore up the national capacity for detecting several resistance threats including N. gonorrhoeae. AR-Ng testing, a subactivity of the CDC’s AR Lab Network, is performed in a tiered network of approximately 35 local laboratories, four regional laboratories (state public health laboratories in Maryland, Tennessee, Texas, and Washington), and the CDC’s national reference laboratory. Local laboratories receive specimens from approximately 60 clinics associated with the Gonococcal Isolate Surveillance Project (GISP), enhanced GISP (eGISP), and the program Strengthening the U.S. Response to Resistant Gonorrhea (SURRG). They isolate and ship up to 20,000 isolates to regional laboratories for culture-based agar dilution AST with seven antibiotics and for whole-genome sequencing of up to 5,000 isolates. The CDC further examines concerning isolates and monitors genetic AR markers. During 2017 and 2018, the network tested 8,214 and 8,628 N. gonorrhoeae isolates, respectively, and the CDC received 531 and 646 concerning isolates and 605 and 3,159 sequences, respectively. In summary, the AR Lab Network supported the laboratory capacity for N. gonorrhoeae AST and associated genetic marker detection, expanding preexisting notification and analysis systems for resistance detection. Continued, robust AST and genomic capacity can help inform national public health monitoring and intervention.


2020 ◽  
Vol 35 (4) ◽  
pp. 237-242
Author(s):  
Ya. M. Krasnov ◽  
Zh. V. Alkhova ◽  
S. V. Generalov ◽  
I. V. Tuchkov ◽  
E. A. Naryshkina ◽  
...  

2018 ◽  
Vol 57 (7) ◽  
pp. 905-908 ◽  
Author(s):  
David New ◽  
Alicia G Beukers ◽  
Sarah E Kidd ◽  
Adam J Merritt ◽  
Kerry Weeks ◽  
...  

AbstractWhole genome sequencing (WGS) was used to demonstrate the wide genetic variability within Sporothrix schenckii sensu lato and establish that there are two main species of Sporothrix within Australian clinical isolates—S. schenckii sensu stricto and Sporothrix globosa. We also demonstrated southwest Western Australia contained genetically similar S. schenckii ss strains that are distinct from strains isolated in the eastern and northern states of Australia. Some genetic clustering by region was also noted for northern NSW, Queensland, and Northern Territory. Phylogenetic analysis of WGS data provided greater phylogenetic resolution compared to analysis of the calmodulin gene alone.


Sign in / Sign up

Export Citation Format

Share Document