scholarly journals 586. Immunogenicity of COVID-19 mRNA Vaccines in Patients with Lymphoid Malignancies

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S395-S396
Author(s):  
Natalie E Izaguirre ◽  
Amy C Sherman ◽  
Jennifer Crombie ◽  
Michaël Desjardins ◽  
Chi-An Cheng ◽  
...  

Abstract Background Patients with lymphoid malignancies are at high risk of severe COVID-19 disease and were not included in the phase 3 mRNA vaccine trials. Many patients with lymphoid malignancies receive immunosuppressive therapies, including B-cell depleting agents, that may negatively impact humoral response to vaccination. Methods We recruited patients with lymphoid malignancies and healthy participants who planned to receive two doses of SARS-CoV-2 mRNA vaccine (BNT162b2 or mRNA-1273). Blood was drawn at baseline, prior to second dose of vaccine, and 28 days after last vaccination. Disease characteristics and therapies were extracted from patients’ electronic medical record. An ultrasensitive, single molecule array (Simoa) assay detected anti-Spike (S), anti-S1, anti-receptor binding domain (RBD), and anti-Nucleocapsid (N) IgG from plasma at each timepoint. Results 23 healthy participants and 37 patients with lymphoid malignancies were enrolled (Table 1). Low titers of anti-N (Fig 1A) demonstrate no prior exposure or acquisition of COVID-19 before vaccination or during the study. 37.8% of the lymphoid malignancy cohort responded to the vaccine, using an internally validated AEB cutoff of 1.07. A significantly higher magnitude of anti-S (p< 0.0001), anti-S1 (p< 0.0001) and anti-RBD (p< 0.0001) are present in the healthy as compared to lymphoid malignancy cohort at the second dose and day 28 post-series (Fig 1B, Fig 1C and Fig 1D). Anti-S IgG titers were compared between the healthy cohort, treatment naïve, and treatment experienced groups (Fig 2). The treatment naïve cohort had high titers by series completion which were not significantly different from the healthy cohort (p=0.2259), although the treatment experienced group had significantly decreased titers (p< 0.0001). Of the 20 patients who had received CD20 therapy, there was no clear correlation of anti-S IgG response with time from CD20 therapy, although most patients who received CD20 therapies within 12 months from the vaccine had no response (Figure 3). Table 1. Demographics Figure 1. Anti-N, Anti-S, Anti-S1, Anti-RBD and Anti-N Ig G for healthy v. lymphoid malignancy cohort The dotted line at 1.07 marks in an internally validated threshold to mark anti-S IgG response. The black bars denote median with 95% CI. Figure 2: Anti-S IgG for healthy v. treatment naïve v. treatment experienced The dotted line at 1.07 marks in an internally validated threshold to mark antibody response. The black bars denote median with 95% CI. Conclusion The vaccine-induced immune response was poor among treatment-experienced patients with lymphoid malignancies, especially among those who received CD20 therapies within 12 months. Figure 3. Months from CD20 therapy v. anti-S IgG titers The dotted line at 1.07 marks in an internally validated threshold to mark antibody response. Disclosures Jennifer Crombie, MD, AbbVie (Grant/Research Support)Bauer (Grant/Research Support)Karyopharm (Consultant)MorphoSys (Consultant) Philippe Armand, MD PhD, ADCT, Celgene, Morphosys, Daiichi, Miltenyi, Tessa, C4, Genmab, Enterome, Regeneron, Genentech, Epizyme, Astra Zeneca (Consultant, Sorry to put them all in, hope you can deconvolute for me)Affimed, Adaptive, BMS, Merck, Kite, IGM, Genentech (Research Grant or Support, Institutional research funding) David Walt, PhD, Quanterix Corporation (Board Member, Shareholder) Nicolas C. Issa, MD, AiCuris (Scientific Research Study Investigator)Astellas (Scientific Research Study Investigator)GSK (Scientific Research Study Investigator)Merck (Scientific Research Study Investigator)

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S535-S536
Author(s):  
Charlotte-Paige M Rolle ◽  
Jamie Castano ◽  
Vu Nguyen ◽  
Kiran Patel ◽  
Federico Hinestrosa ◽  
...  

Abstract Background Cohort studies suggest higher rates of discontinuations (DCs) and adverse events (AEs) with integrase inhibitors (INSTIs) than is reported in clinical trials. Here, we assess DC of different INSTIs in combination with one of two tenofovir prodrugs in the first year following initiation defined as “early DC” in a real-world cohort of treatment-naïve patients. Methods This analysis evaluated treatment-naïve patients at a single center initiating raltegravir (RAL), elvitegravir/cobicistat (EVG/c), dolutegravir (DTG) or bictegravir (BIC) in combination with emtricitabine/tenofovir alafenamide (F/TAF) or emtricitabine/tenofovir disoproxil fumarate (F/TDF) between 10/2007-1/2020. Eligible patients had a minimum follow-up of 1 year. The primary endpoint was incidence of early INSTI DC. Secondary endpoints included AEs and risk factors for early INSTI DC and treatment-related AEs. Results 331 patients were included. Median age was 32 years, 89% were male, 43% were non-White, 8% started RAL-based therapy, 46% started EVG/c-based therapy, 22% started DTG-based therapy and 24% started BIC/F/TAF. 36 discontinued INSTI-based therapy early yielding an incidence rate of 0.17 DCs per person-years (PPY) among RAL patients, 0.14 DCs PPY among EVG/c patients, 0.22 DCs PPY among DTG patients, and 0 DCs PPY among BIC patients, p=0.006. Treatment-related AEs occurred in 27% of RAL patients, 42% of EVG/c patients, 50% of DTG patients, and 43% of BIC patients p=0.607; and were responsible for early DC rates of 0.022 in 3 EVG/c patients and 0.075 in 5 DTG patients. No treatment-related early DCs occurred among RAL or BIC patients. No evaluated factor was significantly associated with early INSTI DC, however DTG use was significantly associated with treatment-related AEs (aOR 3.46, 95% confidence interval: [1.20; 10.82]). Table 1. Risk factors for early integrase inhibitor discontinuation and treatment-related adverse events Conclusion In this cohort, early DCs occurred in 11% initiating INSTI-based therapy, however of these only 2% were treatment-related. These data support use of INSTI-based regimens as preferred options for treatment-naïve patients living with HIV due to their favorable safety and tolerability profiles. Disclosures Charlotte-Paige M. Rolle, MD MPH, Gilead Sciences (Grant/Research Support, Scientific Research Study Investigator, Speaker’s Bureau)Janssen Infectious Disease (Scientific Research Study Investigator, Advisor or Review Panel member)ViiV Healthcare (Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member, Speaker’s Bureau) Kiran Patel, PharmD, Gilead Sciences (Employee) Federico Hinestrosa, MD, AbbVie (Speaker’s Bureau)Gilead Sciences (Advisor or Review Panel member, Speaker’s Bureau)Theratechonologies (Advisor or Review Panel member)ViiV Healthcare (Advisor or Review Panel member, Speaker’s Bureau) Edwin DeJesus, MD, Gilead Sciences (Scientific Research Study Investigator, Advisor or Review Panel member)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S798-S799
Author(s):  
Nicolo Cabrera ◽  
Truc T Tran ◽  
Travis J Carlson ◽  
Faris Alnezary ◽  
William R Miller ◽  
...  

Abstract Background Ceftolozane/tazobactam (C/T) is a novel cephalosporin/beta-lactamase inhibitor combination developed for use against multidrug-resistant (MDR) Gram-negative infections, particularly Pseudomonas aeruginosa (PA). C/T is approved for complicated urinary tract and intraabdominal infections as well as hospital-acquired/ventilator-associated bacterial pneumonias. However, comprehensive clinical characterization of patients treated with C/T in non-FDA-approved indications is limited. Methods Patients ≥18 years who received C/T for ≥48 hours while hospitalized in 9 acute care centers in Houston, TX from January 2016 through September 2018 were included. Demographic, microbiologic, treatment and clinical outcome data were retrospectively collected by chart review. In patients who received multiple inpatient courses of C/T, only the first course with C/T was assessed. Results 210 patients met inclusion criteria: 58% were non-white, 35% were female and 13% were immunocompromised. Median age was 61 years (IQR, 48 to 69). Median Charlson comorbidity index was 5 (IQR, 2 to 6). At the onset of the index episode, a significant proportion of patients required intensive care unit admission (44%), mechanical ventilation (37%) and pressor support (22%). Respiratory sources were the most common (50%) followed by urine (15%). Positive cultures were documented in 93% of the cases and PA was found in 86%. Majority (95%) of PA which were MDR. C/T use was guided by susceptibility testing of the index isolate in ca. 52%. In 5.7% of cases, C/T was used to escalate therapy without any documented C/T-susceptible organism. Half (51%) of the cohort received initial dosing appropriate for renal function while 36% receiving a lower than recommended dose. Clinical success (i.e., recovery from infection-related signs and symptoms) occured in 77%. The in-hospital mortality rate in our cohort was 15% with 26 of 31 deaths deemed infection-related. Conclusion We report a large multicenter observational cohort that received C/T. A 77% clinical success with the use of C/T was documented. These data support the use of C/T in critically ill patients infected with MDR PA. Disclosures William R. Miller, MD, Entasis Therapeutics (Scientific Research Study Investigator)Merck (Grant/Research Support)Shionogi (Advisor or Review Panel member) Laura A. Puzniak, PhD, Merck (Employee) Cesar A. Arias, MD, MSc, PhD, FIDSA, Entasis Therapeutics (Scientific Research Study Investigator)MeMed (Scientific Research Study Investigator)Merck (Grant/Research Support)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S758-S759
Author(s):  
Stephen I Pelton ◽  
Rotem Lapidot ◽  
Matthew Wasserman ◽  
Melody Shaff ◽  
Ahuva Hanau ◽  
...  

Abstract Background Community-acquired pneumonia (CAP) in infancy (i.e., among children aged < 2 years) may have long-term consequences for the rapidly developing lung. We examined the impact of pneumonia in infancy on subsequent respiratory health. Methods A retrospective matched-cohort design and data from Optum’s de-identified Integrated Claims-Clinical dataset (2009-2018) were employed. Study population comprised children who were hospitalized for CAP before age 2 years (“CAP patients”) as well as matched comparators without evidence of pneumonia before age 2 years (“comparison patients”). CAP patients and comparison patients were matched (fixed 1:5 ratio, without replacement) using estimated propensity scores and a nearest-neighbor approach; those with evidence of selected medical conditions (e.g., extreme prematurity, congenital diseases, respiratory diseases) before age 2 years were excluded. Study outcomes included recurrent pneumonia and a composite of asthma, recurrent wheezing, and hyperactive airway disease. Rates of study outcomes from age 2 to 5 years were estimated for all CAP and comparison patients as well as subgroups of CAP patients (and corresponding comparison patients) stratified by etiology (bacterial, viral, unspecified). Results Study population totaled 1,343 CAP patients and 6,715 comparison patients. CAP patients and comparison patients were well-balanced on their baseline characteristics and mean duration of follow-up was 757 and 729 days, respectively. Rates of chronic respiratory disorders from age 2 to 5 years were significantly higher among CAP patients versus comparison patients. Analyses of subgroups stratified by etiology demonstrated higher rates of study outcomes among CAP patients across all strata. Rates of recurrent pneumonia and a composite of asthma, recurrent wheezing, and hyperactive airway disease from age 2 to 5 years among CAP patients and matched comparison patients Conclusion Infant CAP foreshadows an increase in subsequent risk of chronic respiratory disorders. Further studies are needed to determine whether this elevated risk is due to infant pneumonia or whether infant pneumonia is a marker of at-risk children. Disclosures Stephen I. Pelton, MD, Merck vaccine (Consultant, Grant/Research Support)Pfizer (Consultant, Grant/Research Support)Sanofi Pasteur (Consultant, Other Financial or Material Support, DSMB)Seqirus Vaccine Ltd. (Consultant) Rotem Lapidot, MD, MSCI, Pfizer (Consultant) Matthew Wasserman, MSc., Pfizer Inc. (Employee) Melody Shaff, BA, Pfizer, Inc. (Consultant, Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Ahuva Hanau, BS, Pfizer, Inc. (Consultant, Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Alexander Lonshteyn, PhD, Pfizer, Inc. (Consultant, Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Derek Weycker, PhD, Pfizer Inc. (Consultant, Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S137-S138
Author(s):  
J P Sanchez ◽  
German Contreras ◽  
Truc T Tran ◽  
Shelby Simar ◽  
Blake Hanson ◽  
...  

Abstract Background E. faecalis (Efc) isolates are usually susceptible to ampicillin (AMP). AMP-based regimens are the standard of care for enterococcal infections, although other antibiotics are often used as definitive treatment. We thus compared outcomes of patients with cancer and Efc bacteremia treated with AMP-containing (ACR) and non-AMP-containing antibiotic regimens (NACR). Methods A multicenter, prospective, observational cohort study conducted at MD Anderson Cancer Center, Henry Ford Hospital, and Memorial Hermann Health System. Eligible patients were ≥ 18 years old, diagnosed with cancer, and had at least one Efc bloodstream isolate collected from 12/2015 to 12/2018. Patients with polymicrobial infections were excluded. Patients were divided into two groups: i) ACR and ii) NACR. ACR included patients who received AMP at any time during treatment; other antimicrobials were permitted. NACR patients did not receive AMP at any time. The primary outcome compared desirability of outcome ranking (DOOR) between ACR and NACR at day 14. The DOOR consisted of six hierarchical levels: 1 - death; 2 - inpatient without microbiological cure (MC) and with acute kidney injury (AKI); 3 - inpatient without MC and without AKI; 4 - inpatient admitted with MC and with AKI; 5 - inpatient with MC and without AKI; 6 - alive and discharged. Comparison of DOORs between ACR and NACR was performed using inverse probability of treatment weighted (IPTW) ordered logistic regression. Results Seventy-one patients were included (ACR, n = 35; NACR, n = 36). No difference was seen in DOORs at day 14 between ACR and NACR (odds ratio [OR] 1.14, 95% Confidence Interval [CI] 0.45 – 2.92, p=0.78). No difference was observed for all-cause mortality at day 14 (OR 0.6, 95% CI 0.09 – 3.77, p=0.58) or day 30 (OR 0.42, 95% CI 0.09 – 1.94, p=0.27). Patients treated with ACR received a lower median duration of other antibiotics at any point during treatment compared to NACR: daptomycin (2 v 4 days) vancomycin (2 v 4 days), and linezolid (1 v 2 days). Conclusion Patients with cancer and Efc bloodstream infections had similar outcomes when treated with ACR and NACR. ACR were associated with less use of broad-spectrum antimicrobials. Future research should focus on the ecologic impact of use of NACR. Disclosures Marcus Zervos, MD, Melinta Therapeutics (Grant/Research Support) Cesar A. Arias, MD, MSc, PhD, FIDSA, Entasis Therapeutics (Scientific Research Study Investigator)MeMed (Scientific Research Study Investigator)Merck (Grant/Research Support)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S45-S45
Author(s):  
Jinhee Jo ◽  
Joshua Hendrickson ◽  
Anne J Gonzales-Luna ◽  
Nicholas D Beyda ◽  
Kevin W Garey

Abstract Background Invasive candidiasis (IC) is a common healthcare-associated infection. Rates of IC caused by drug-resistant Candida spp., designated by the CDC as a serious threat, are increasing, and Candida auris alone was recently added as an urgent threat. Echinocandins are guideline-preferred for the treatment of invasive candidiasis due to in vitro potency, a favorable toxicity profile, and convenient dosing. The purpose of this study was to perform a pharmacoepidemiologic analysis on patterns of echinocandin use at a large, quaternary care medical center. Methods Data reporting echinocandin use, pharmacy data, and clinical microbiologic data obtained from 2017–19 were pooled. Monthly days of therapy (DOT) per 1,000 patient days were calculated during the study period along with number of unique orders. Investigators evaluated the proportion of echinocandin-treated patients with or without positive Candida cultures; the relationship between echinocandin use and hospital admission and discharge dates was also evaluated. Results Echinocandin monthly DOT/1,000 patient days present averaged 26 (± 5) DOT and did not change appreciably during the study period. Of the patients with microbiologic evidence of Candida, 842 (51%) received echinocandin courses. Length of echinocandin therapy was significantly longer for patients with positive Candida cultures (5.5 ± 5.9 days) compared to those without positive cultures (3.9 ± 5.0 days; p< 0.001). Of 1,659 echinocandin courses evaluated, 549 courses (33%) were initiated within 2 days of hospital admission and the average time from hospital admission to echinocandin start was 9 (± 13) days. A total of 505 (24%) echinocandin courses were continued until the day of discharge. Conclusion The rate of echinocandin use did not change appreciably during the study period. A significant proportion of echinocandin courses were either started upon hospital admission or were continued until the day of discharge. Further studies to evaluate antifungal stewardship opportunities for the echinocandin pharmacologic class are warranted. Disclosures Nicholas D. Beyda, PharmD, BCPS, Astellas (Advisor or Review Panel member)Cidara (Grant/Research Support, Scientific Research Study Investigator) Kevin W. Garey, PharMD, MS, FASHP, Merck & Co. (Grant/Research Support, Scientific Research Study Investigator)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S5-S6
Author(s):  
Ayesha Khan ◽  
Samuel G Erickson ◽  
Cedric H Pettaway ◽  
Cesar A Arias ◽  
William R Miller ◽  
...  

Abstract Background Carbapenem-resistant Enterobacterales (CRE) and Pseudomonas aeruginosa (CR-PA) producing Metallo-β-lactamases (MBLs) cause severe nosocomial infections with no defined treatment. Combination therapy with ceftazidime/ avibactam (CZA) and aztreonam (ATM) is a potential option, but there is no approved, feasible, synergy testing method for clinical labs to guide clinical decision making. Here, we evaluate the performance of 4 synergy testing methods using gradient-strips or disks. Methods We used 10 representative Enterobacterales strains, namely, E. coli, K. pneumoniae, and E. cloacea, and 6 PA strains harboring MBL, GES or non-MBL enzymes (Fig 1). 4 strains were successfully treated with CZA-ATM in case reports, the rest were from the CDC AR Bank. Four synergy testing methods were evaluated, i) Disk stack (DS), ii) Disk elution (DE), iii) Gradient-strip Stack (SS), iv) Gradient-strip Cross (SX) (Fig 1). All methods were run side-by-side as per CLSI guidelines with broth microdilution (BMD) as the reference. Data is the mean of 3 replicates. Synergy is defined as a strain that is resistant (R) to ATM but drops to ≤ the susceptible (S) breakpoint (Table 1) in the presence of CZA (Fig 2). Categorical agreement (CA), very major error (VME), major error (ME), minor error (MI) were calculated across methods for CZA-ATM synergy relative to BMD. Summary of synergy testing methods evaluated CLSI Breakpoints used for this study Results All CRE with NDM and PA with GES were ATM-R, CZA-R and S to the CZA-ATM combination. PA with NDM or VIM remained R to CZA-ATM likely due to other mechanisms of resistance. CA was high for DE (100%), SS (81%, MI 19%), and SX (88%, MI 13%) but low for DS (25%, ME 54%, MI 31%). Representative strains are shown (Fig 2, Table 2). Removing PA, CA for DE, SS, and SX was 100% and 20% for DS. Representative results of strains with each synergy testing method. Representative data of strains displaying synergy (green) or no synergy (red) Conclusion Overall, DE was the most reliable method for CZA-ATM synergy testing, and could be a valuable tool in low-resource labs. SS and SX were reliable but prone to technical error. DS had the worst performance. Disks and gradient-strips had identical performance across brands. We propose an algorithm for ATM-R, CZA-R, and MBL-positive CRE, where CZA-ATM synergy testing may be beneficial to guide therapy. These methods are reliable qualitative indicators of the presence or absence of synergy. Synergy testing is not recommended for CR-PA due to complex resistance profiles. Disclosures Cesar A. Arias, M.D., MSc, Ph.D., FIDSA, Entasis Therapeutics (Scientific Research Study Investigator)MeMed (Scientific Research Study Investigator)Merck (Grant/Research Support) William R. Miller, MD, Entasis Therapeutics (Scientific Research Study Investigator)Merck (Grant/Research Support)Shionogi (Advisor or Review Panel member)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S72-S72
Author(s):  
Peter G Pappas ◽  
Andrej Spec ◽  
Marisa Miceli ◽  
Gerald McGwin ◽  
Rachel McMullen ◽  
...  

Abstract Background C-itra is the drug of choice for treatment of most non-CNS, non-life-threatening forms of endemic mycoses (EM), including histoplasmosis, blastomycosis, coccidioidomycosis, sporotrichosis and talaromycosis. SUBA represents a new formulation of itraconazole that utilizes nanotechnology to improve bioavailability when administered orally. SUBA is formulated as nanoparticles allowing for absorption in the small bowel while not relying on gastric acidity for optimal absorption. MSG-15 is an open-label, comparative clinical trial comparing SUBA to c-itra for the treatment of EM. Herein we report the final PK and AE profiles of these two compounds. Methods Subjects with proven and probable EM were eligible this open-label comparative study. The protocol allowed up to 14 d of prior therapy with any antifungal for this episode of EM. Subjects were randomized to receive either SUBA 130 mg po bid or c-itra 200 mg po bid for up to 6 months. Follow up occurred at 7, 14, 28, 42, 84 and 180 d post-enrollment. PK samples were obtained at 7, 14, and 42 d. Clinical assessment, including symptom assessment, AEs, overall drug tolerance, and quality of life were assessed at each visit. We used descriptive statistics for this analysis. Results 89 subjects with EM entered the trial, including 43 on SUBA and 46 on c-itra. We measured PK serum levels of itra and hydroxyl-itra at days 7, 14, and 42 and these data are depicted in Figures 1-3. There were no significant differences in these levels, including combined itra/hydroxyl-itra levels, among the two study arms. AUC for itra and hydroxyl-itra were similar for both arms. AEs as assessed at each study evaluation were also quite similar among the two study arms. Overall, any AE occurred in 74% vs 85% of SUBA and c-itra recipients, respectively (NS). Drug-related AEs occurred in 35% vs 41% of SUBA and itra recipients, respectively (NS). Most common drug-related AEs included cardiovascular (edema and hypertension), nausea and loss of appetite. Combined Itraconazole and Hydroxy-itraconazole Concentration Over Time Conclusion Compared to c-itra, SUBA demonstrates almost identical serum levels despite being dosed at roughly 60% standard dosing for c-itra (130 mg po bid vs 200 mg po bid). SUBA is slightly better tolerated than c-itra, although the specific AEs are similar. Disclosures Peter G. Pappas, MD, Astellas (Research Grant or Support)Cidara (Research Grant or Support)F2G (Consultant)Matinas (Consultant, Scientific Research Study Investigator)Mayne Pharma (Research Grant or Support)Scynexis (Research Grant or Support) Andrej Spec, MD, MSCI, Mayne Pharma (Grant/Research Support) Marisa Miceli, MD, SCYNEXIS, Inc. (Advisor or Review Panel member) George R. R. Thompson III, III, MD, Amplyx (Consultant, Grant/Research Support)Appili (Consultant)Astellas (Consultant, Grant/Research Support)Avir (Grant/Research Support)Cidara (Consultant, Grant/Research Support)F2G (Consultant, Grant/Research Support)Mayne (Consultant, Grant/Research Support)Merck (Scientific Research Study Investigator)Pfizer (Advisor or Review Panel member)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S340-S340
Author(s):  
Antonella Castagna ◽  
David Shu Cheong Hui ◽  
Kathleen M Mullane ◽  
Kathleen M Mullane ◽  
Mamta Jain ◽  
...  

Abstract Background Remdesivir (RDV) has been shown to shorten recovery time and was well tolerated in patients with severe COVID-19. Here we report baseline characteristics associated with clinical improvement at day (d) 14. Methods We enrolled hospitalized patients with confirmed SARS-CoV-2 infection, oxygen saturation >94% on room air, and radiological evidence of pneumonia. Patients were randomized 1:1:1 to receive 5d or 10d of intravenous RDV once daily plus standard of care (SoC), or SoC only. For this analysis, patients were followed through discharge, d14, or death. Baseline demographic and disease characteristics associated with clinical improvement in oxygen support (≥2-point improvement on a 7-category ordinal scale ranging from discharge to death) were evaluated using multivariable logistic regression methods. Results 584 patients were randomized and treated (5/10d RDV, n=384; SoC: n=200). 159 (27%) were ≥65y, 227 (39%) female, 328 (61%) white, 102 (19%) Asian, and 99 (19%) Black. 252 participants (43%) were enrolled in Europe, 260 (45%) North America (NA), and 72 (12%) in Asia. Most patients (483 [83%]) were not on supplemental oxygen but required medical care at baseline. In a multivariable model, 5/10d RDV was significantly positively associated with clinical improvement (adjusted odds ratio [OR] 1.69, 95% CI: 1.08, 2.65; p=0.0226). Significant covariables positively associated with clinical improvement included age < 65y (p< 0.0001) and region of treatment (Europe and NA vs Asia, p< 0.0001 each; Table); other examined factors were not significantly associated with clinical improvement, including gender, race, ethnicity, baseline oxygen support, duration of symptoms and hospitalization, obesity, and baseline transaminase levels. Table 1. Conclusion In moderate COVID-19 patients, after adjusting for treatment arm, age < 65y and region (NA vs Asia; Europe vs Asia) were associated with higher rates of clinical improvement. These observations recapitulate younger age as positive prognostic factor, and highlight the differences in the impact of the pandemic globally. Disclosures Antonella Castagna, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) David Shu Cheong Hui, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Kathleen M. Mullane, DO, PharmD, Gilead Sciences Inc. (Grant/Research Support, Scientific Research Study Investigator) Mamta Jain, MD, Gilead Sciences Inc. (Scientific Research Study Investigator, Research Grant or Support)GlaxoSmithKline (Advisor or Review Panel member)Janssen (Research Grant or Support)Merck (Research Grant or Support) Massimo Galli, MD, Gilead Sciences Inc. (Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member, Other Financial or Material Support, Personal fees) Shan-Chwen Chang, MD, PhD, Gilead Sciences Inc. (Scientific Research Study Investigator) Robert H. Hyland, MD, Gilead Sciences Inc. (Employee, Shareholder) Devi SenGupta, MD, Gilead Sciences Inc. (Employee, Shareholder) Huyen Cao, MD, Gilead Sciences Inc. (Employee, Shareholder) Hailin Huang, PhD, Gilead Sciences Inc. (Employee, Shareholder) Anand Chokkalingam, PhD, Gilead Sciences (Employee) Anu Osinusi, MD, Gilead Sciences (Employee) Diana M. Brainard, MD, Gilead Sciences (Employee) Christoph Lübbert, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) David Chien Boon Lye, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) David Chien Boon Lye, MD, NO DISCLOSURE DATA Judith A. Aberg, MD, Theratechnology (Consultant) Enrique Navas Elorza, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Karen T. Tashima, MD, Bristol-Myers Squibb (Research Grant or Support)Gilead Sciences Inc. (Grant/Research Support, Scientific Research Study Investigator)GlaxoSmithKline (Research Grant or Support)Merck (Research Grant or Support)Tibotec (Research Grant or Support)Viiv Healthcare (Research Grant or Support) Mark McPhail, MD, Gilead Sciences Inc. (Scientific Research Study Investigator)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S757-S758
Author(s):  
Olivia D Reese ◽  
Ashley Tippett ◽  
Laila Hussaini ◽  
Luis Salazar ◽  
Megan Taylor ◽  
...  

Abstract Background Acute respiratory tract infections (ARIs) are a significant cause of morbidity in adults. Influenza is associated with about 490,600 hospitalizations and 34,200 deaths in the US in the 2018-2019 season. The burden of rhinovirus among adults hospitalized with ARI is less well known. We compared the burden of influenza and rhinovirus from 2 consecutive winter respiratory viral seasons in hospitalized adults and healthy controls pre-COVID-19 and one season mid-COVID-19 to determine the impact of rhinovirus as a pathogen. Methods From Oct 2018 to Apr 2021, prospective surveillance of adults ≥50 years old admitted with ARI or COPD/CHF exacerbations at any age was conducted at two Atlanta hospitals. Adults were eligible if they lived within an eight-county region around Atlanta and if their symptom duration was < 14 days. In the seasons from Oct 2018 to Mar 2020, asymptomatic adults ≥50 years old were enrolled as controls. Standard of care test results were included and those enrolled contributed nasopharyngeal swabs that were tested for respiratory pathogens using BioFire® FilmArray® Respiratory Viral Panel (RVP). Results During the first two seasons, 1566 hospitalized adults were enrolled. Rhinovirus was detected in 7.5% (118) and influenza was detected in 7.7% (121). Rhinovirus was also detected in 2.2% of 466 healthy adult controls while influenza was detected in 0%. During Season 3, the peak of the COVID-19 pandemic, influenza declined to 0% of ARI hospitalizations. Rhinovirus also declined (p=0.01) but still accounted for 5.1% of all ARIs screened (Figure 1). Rhinovirus was detected at a greater rate in Season 3 than in asymptomatic controls in the first 2 seasons (p=0.008). In the first two seasons, Influenza was detected in 8.6% (24/276) of those admitted to the ICU. Rhinovirus was detected in 6.1% (17/276) of those admitted to the ICU but declined to 3.1% (8/258) in Season 3. Figure 1. Percent Positive Cases of Influenza and Rhinovirus between Season 1&2 (hospitalized and healthy controls) vs Season 3 (hospitalized) Conclusion Dramatic declines occurred in influenza in adults hospitalized with ARI, CHF, or COPD in Atlanta during the COVID-19 pandemic and with enhanced public health measures. Although rhinovirus declined during the COVID-19 pandemic, it continued to be identified at a rate higher than in historical controls. Additional data are needed to understand the role of rhinovirus in adult ARI, CHF, and COPD exacerbations. Disclosures David L. Swerdlow, MD, Pfizer Vaccines (Employee) Robin Hubler, MS, Pfizer Inc. (Employee) Christina A. Rostad, MD, BioFire Inc, GSK, MedImmune, Micron, Janssen, Merck, Moderna, Novavax, PaxVax, Pfizer, Regeneron, Sanofi-Pasteur. (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support)Meissa Vaccines (Other Financial or Material Support, Co-inventor of patented RSV vaccine technology unrelated to this manuscript, which has been licensed to Meissa Vaccines, Inc.) Larry Anderson, MD, ADVI (Consultant)Bavarian Nordic (Consultant)Novavax (Consultant)Phizer (Grant/Research Support, Scientific Research Study Investigator)Sciogen (Research Grant or Support) Nadine Rouphael, MD, pfizer, sanofi, lily, quidel, merck (Grant/Research Support) Nadine Rouphael, MD, Lilly (Individual(s) Involved: Self): Emory Study PI, Grant/Research Support; Merck (Individual(s) Involved: Self): Emory study PI, Grant/Research Support; Pfizer: I conduct as co-PI the RSV PFIZER study at Emory, Research Grant; Pfizer (Individual(s) Involved: Self): Grant/Research Support, I conduct as co-PI the RSV PFIZER study at Emory; Quidel (Individual(s) Involved: Self): Emory Study PI, Grant/Research Support; Sanofi Pasteur (Individual(s) Involved: Self): Chair phase 3 COVID vaccine, Grant/Research Support Evan J. Anderson, MD, GSK (Scientific Research Study Investigator)Janssen (Consultant, Scientific Research Study Investigator, Advisor or Review Panel member)Kentucky Bioprocessing, Inc (Advisor or Review Panel member)MedImmune (Scientific Research Study Investigator)Medscape (Consultant)Merck (Scientific Research Study Investigator)Micron (Scientific Research Study Investigator)PaxVax (Scientific Research Study Investigator)Pfizer (Consultant, Grant/Research Support, Scientific Research Study Investigator)Regeneron (Scientific Research Study Investigator)Sanofi Pasteur (Consultant, Scientific Research Study Investigator)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S806-S807
Author(s):  
Joshua A Hill ◽  
Roger Paredes ◽  
Carlos Vaca ◽  
Jorge Mera ◽  
Brandon J Webb ◽  
...  

Abstract Background Remdesivir (RDV) is a potent nucleotide prodrug inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase that has demonstrated efficacy in the treatment of patients hospitalized with moderate to severe COVID-19. This Phase 3 (GS-US-540–9012) double-blind, placebo-controlled study compared the efficacy and safety of 3 days of RDV to standard of care in non-hospitalized, high-risk participants with confirmed COVID-19. Table 1. COVID-19 related hospitalization or death, COVID-19 related medically attended visits or death, and Treatment Emergent Adverse Events Methods Participants were randomly assigned 1:1 to receive intravenous (IV) RDV (200 mg on day 1, 100 mg on days 2 to 3) or placebo. The primary efficacy endpoint was composite COVID-19 hospitalization or all-cause death by day 28 and compared using Cox proportional hazards model with baseline stratification factors as covariates. The primary safety endpoint was proportion of participants with treatment-emergent adverse events. Study enrollment was terminated early for administrative reasons in light of the evolving pandemic. Results 562 patients underwent randomization and started their assigned treatment (279, RDV; 283, placebo). Baseline demographics and characteristics were balanced across arms. Overall, 52% were male, 44% were Hispanic/Latino ethnicity and 30% were ≥ 60 years old. The most common comorbidities were diabetes mellitus (62%), obesity (56%; median BMI, 30.7), and hypertension (48%). Median baseline SARS-CoV-2 RNA nasopharyngeal viral load was 6.2 log10 copies/mL. Treatment with RDV significantly reduced COVID-19 hospitalization or all-cause death by day 28 (HR, 0.13; 95% CI, 0.03 – 0.59; p = 0.008; Table 1) compared to placebo. Participants receiving RDV also had significantly lower risk for COVID-19-related medically attended visits or all-cause death by day 28 compared to placebo (HR, 0.19; 95% CI, 0.07 – 0.56; p = 0.002; Table 1). No deaths occurred in either arm by day 28. There was no difference between arms in time-weighted average change in nasopharyngeal viral loads from baseline up to day 7. The proportion of patients with AEs was similar between arms (Table 1); the most common AEs in the RDV arm were nausea (11%), headache (6%), and diarrhea (4%). Conclusion A 3-day course of IV RDV was safe, well tolerated and highly effective at preventing COVID-19 related hospitalization or death in high-risk non-hospitalized COVID-19 patients. Disclosures Joshua A. Hill, MD, Allogene (Individual(s) Involved: Self): Consultant; Allovir (Individual(s) Involved: Self): Consultant, Grant/Research Support; Amplyx (Individual(s) Involved: Self): Consultant; Covance/CSL (Individual(s) Involved: Self): Consultant; CRISPR (Individual(s) Involved: Self): Consultant; Gilead (Individual(s) Involved: Self): Consultant, Grant/Research Support; Karius: Grant/Research Support, Scientific Research Study Investigator; Medscape (Individual(s) Involved: Self): Consultant; Octapharma (Individual(s) Involved: Self): Consultant; OptumHealth (Individual(s) Involved: Self): Consultant; Takeda (Individual(s) Involved: Self): Consultant, Grant/Research Support, Scientific Research Study Investigator Roger Paredes, MD, PhD, Gilead Sciences, Inc (Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member) Carlos Vaca, MD, Gilead Sciences, Inc (Scientific Research Study Investigator) Jorge Mera, MD, Gilead Sciences, Inc (Consultant, Study Investigator (payment to employer not self)) Gilberto Perez, MD, Gilead Sciences, Inc (Scientific Research Study Investigator) Godson Oguchi, MD, Gilead Sciences, Inc (Scientific Research Study Investigator) Pablo Ryan, MD PhD, Gilead Sciences, Inc (Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member) Jan Gerstoft, MD, Gilead Sciences, Inc (Other Financial or Material Support, Study Investigator (payment to employer)) Michael Brown, FRCP PhD, Gilead Sciences, Inc (Scientific Research Study Investigator, Investigator for numerous remdesivir trials (employer received compensation)) Morgan Katz, MD, MHS, Roche (Individual(s) Involved: Self): Advisor or Review Panel member; Skinclique (Individual(s) Involved: Self): Consultant Gregory Camus, PhD, Gilead Sciences (Employee, Shareholder) Danielle P. Porter, PhD, Gilead Sciences (Employee, Shareholder) Robert H. Hyland, DPhil, Gilead Sciences, Inc (Shareholder, Other Financial or Material Support, Employee during the conduct of this trial) Shuguang Chen, PhD, Gilead Sciences, Inc (Employee, Shareholder) Kavita Juneja, MD, Gilead Sciences, Inc (Employee) Anu Osinusi, MD, Gilead Sciences, Inc (Employee, Shareholder) Frank Duff, MD, Gilead Sciences, Inc (Employee, Shareholder) Robert L. Gottlieb, MD, Eli Lilly (Scientific Research Study Investigator, Advisor or Review Panel member)Gilead Sciences (Scientific Research Study Investigator, Advisor or Review Panel member, Other Financial or Material Support, Gift in kind to Baylor Scott and White Research Institute for NCT03383419)GSK (Advisor or Review Panel member)Johnson and Johnson (Scientific Research Study Investigator)Kinevant (Scientific Research Study Investigator)Roche/Genentech (Scientific Research Study Investigator)


Sign in / Sign up

Export Citation Format

Share Document