scholarly journals Feasibility and Validation of Viral Respiratory Disease Surveillance in a Combat Theater Using the Filmarray Respiratory Panel

2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S360-S360
Author(s):  
Ryan Maves ◽  
Derek Larson ◽  
Michael Dempsey ◽  
Benjamin Connors ◽  
James Baldwin ◽  
...  

Abstract Background Viral respiratory infections are a significant threat to deployed military units. Pathogen-based surveillance may be hampered by limitations in trained personnel in theater, difficulty with specimen shipment, and technical issues with equipment maintenance. In this project, we evaluated the performance of the FilmArray respiratory panel at military clinics in Afghanistan and compare results to testing performed in the United States. Methods Participants were recruited after presenting at military clinics at Bagram Airfield (BAF), Afghanistan, in 2013–2014 with fever (≥38° C) and respiratory symptoms (cough, dyspnea, chest pain, and/or sore throat). General medical laboratory staff at BAF were trained to operate the FilmArray; nasopharyngeal swabs were obtained and tested in-theater using the FilmArray respiratory panel (Biofire Diagnostics, Salt Lake City, UT). Samples were then shipped to the USAFSAM Applied Technology Center in 50% RNALater (Qiagen, Valencia, CA) without dry ice and then retested using the same panel. Selected influenza isolates then underwent sequencing to evaluate for potential novel circulating strains. Results 29 specimens underwent testing. A virus was identified on FilmArray in 22/29 specimens at BAF and 24/29 specimens at USAFSAM, of whom 17/29 had influenza A. Positive results between BAF and USAFSAM were concordant in all cases; 2 of the negative results at BAF were identified as having influenza A and rhinovirus, respectively. Among those with influenza A, all but one had undergone seasonal influenza vaccination. 5 influenza isolates then underwent sequencing; 2 were A(H1N1pdm09) consistent with the predominant 2012–2013 strain, while 3 were A(H3N2) viruses with HA mutations that differed from those in the 2013–2014 vaccine strain. No resistance-associated neuraminidase mutations were identified. Conclusion Surveillance using the FilmArray system is effective and feasible in theater by general laboratory staff. H1N1 and H3N2 influenza A viruses predominated in this sample of acute respiratory infections in a deployed military setting despite high vaccination rates. The use of the RNALater preservative is an effective method for specimen transport without requiring a cold chain and may facilitate biosurveillance in remote settings. Disclosures All authors: No reported disclosures.

2014 ◽  
Vol 66 (1) ◽  
pp. 43-50 ◽  
Author(s):  
J. Radovanov ◽  
V. Milosevic ◽  
I. Hrnjakovic ◽  
V. Petrovic ◽  
M. Ristic ◽  
...  

At present, two influenza A viruses, H1N1pdm09 and H3N2, along with influenza B virus co-circulate in the human population, causing endemic and seasonal epidemic acute febrile respiratory infections, sometimes with life-threatening complications. Detection of influenza viruses in nasopharyngeal swab samples was done by real-time RT-PCR. There were 60.2% (53/88) positive samples in 2010/11, 63.4% (52/82) in 2011/12, and 49.9% (184/369) in 2012/13. Among the positive patients, influenza A viruses were predominant during the first two seasons, while influenza B type was more active during 2012/13. Subtyping of influenza A positive samples revealed the presence of A (H1N1)pdm09 in 2010/11, A (H3N2) in 2011/12, while in 2012/13, both subtypes were detected. The highest seroprevalence against influenza A was in the age-group 30-64, and against influenza B in adults aged 30-64 and >65.


2010 ◽  
Vol 31 (S1) ◽  
pp. S22-S26 ◽  
Author(s):  
Danielle M. Zerr ◽  
Aaron M. Milstone ◽  
W. Charles Huskins ◽  
Kristina A. Bryant

Viral respiratory infections pose a significant challenge to pediatric infection prevention programs. We explore issues regarding the prevention of viral respiratory infections by discussing transmission of influenza A virus, isolation of infected patients, and hospital programs for influenza vaccination.


2010 ◽  
Vol 84 (11) ◽  
pp. 5715-5718 ◽  
Author(s):  
Elodie Ghedin ◽  
David E. Wentworth ◽  
Rebecca A. Halpin ◽  
Xudong Lin ◽  
Jayati Bera ◽  
...  

ABSTRACT The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza “off-season,” we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.


2018 ◽  
Vol 13 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Marcus J. Bolton ◽  
Eugenio J. Abente ◽  
Divya Venkatesh ◽  
Jered A. Stratton ◽  
Michael Zeller ◽  
...  

2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Eugenio J. Abente ◽  
Daniela S. Rajao ◽  
Jefferson Santos ◽  
Bryan S. Kaplan ◽  
Tracy L. Nicholson ◽  
...  

ABSTRACTInfluenza A viruses in swine (IAV-S) circulating in the United States of America are phylogenetically and antigenically distinct. A human H3 hemagglutinin (HA) was introduced into the IAV-S gene pool in the late 1990s, sustained continued circulation, and evolved into five monophyletic genetic clades, H3 clades IV-A to -E, after 2009. Across these phylogenetic clades, distinct antigenic clusters were identified, with three clusters (cyan, red, and green antigenic cluster) among the most frequently detected antigenic phenotypes (Abente EJ, Santos J, Lewis NS, Gauger PC, Stratton J, et al. J Virol 90:8266–8280, 2016,https://doi.org/10.1128/JVI.01002-16). Although it was demonstrated that antigenic diversity of H3N2 IAV-S was associated with changes at a few amino acid positions in the head of the HA, the implications of this diversity for vaccine efficacy were not tested. Using antigenically representative H3N2 viruses, we compared whole inactivated virus (WIV) and live-attenuated influenza virus (LAIV) vaccines for protection against challenge with antigenically distinct H3N2 viruses in pigs. WIV provided partial protection against antigenically distinct viruses but did not prevent virus replication in the upper respiratory tract. In contrast, LAIV provided complete protection from disease and virus was not detected after challenge with antigenically distinct viruses.IMPORTANCEDue to the rapid evolution of the influenza A virus, vaccines require continuous strain updates. Additionally, the platform used to deliver the vaccine can have an impact on the breadth of protection. Currently, there are various vaccine platforms available to prevent influenza A virus infection in swine, and we experimentally tested two: adjuvanted-whole inactivated virus and live-attenuated virus. When challenged with an antigenically distinct virus, adjuvanted-whole inactivated virus provided partial protection, while live-attenuated virus provided effective protection. Additional strategies are required to broaden the protective properties of inactivated virus vaccines, given the dynamic antigenic landscape of cocirculating strains in North America, whereas live-attenuated vaccines may require less frequent strain updates, based on demonstrated cross-protection. Enhancing vaccine efficacy to control influenza infections in swine will help reduce the impact they have on swine production and reduce the risk of swine-to-human transmission.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S920-S920
Author(s):  
Nellie Said ◽  
Wendi Gornick ◽  
Beth Huff ◽  
Jasjit Singh

Abstract Background Viral respiratory infections are a major cause of hospitalization and intensive care unit (ICU) admission to children’s hospitals. Rates of respiratory syncytial virus (RSV) and influenza are closely tracked due to their known morbidity. We had previously observed over one season that human metapneumovirus (hMPV)-infected children have high rates of hospitalizations and ICU admissions, particularly those with chronic lung disease (CLD). We expanded our data to include an additional 5 seasons to compare rates of hospitalizations and hospital-acquired infections (HAIs) due to hMPV, RSV and influenza. Methods During the 2014–2019 winter viral seasons, hMPV, RSV and influenza infections were tracked through both PCR testing (Biofire Respiratory Panel) and DFA testing (D3 Ultra DFA Respiratory Virus Screening & ID Kit; Diagnostic Hybrids). For hMPV admissions, rates of hospitalizations, ICU admissions, HAIs and mortalities were assessed and compared with RSV and influenza admissions. Retrospective data were used to study patients infected with hMPV. Results During the winter seasons of 2014–2019, the rates of hospitalization due to hMPV were significantly higher than both RSV and influenza (Figure 1). ICU admissions and HAIs for hMPV were similar to RSV and influenza (Figures 2 and 3). There were 9 deaths over this time period; 5 due to RSV, 3 due to influenza and 1 due to hMPV. The proportion of deaths due to hMPV compared with RSV and influenza was similar (P = 0.54, 0.89, respectively). Of the 315 total admissions with hMPV, 43 (13.7%) had CLD and 13 (4.1%) were tracheostomy dependent. Among 67 hMPV ICU admissions from 2014–2019, 56 (84%) had an underlying medical diagnosis, 25 (37%) had CLD, 13 (19%) had tracheostomies, and 17 (25%) required mechanical ventilation. The average age of hMPV infected children in our ICU is 4 years 1 month. Conclusion Our large descriptive study of hMPV-infected children over 6 seasons showed higher rates of hospitalization compared with RSV and influenza, similar ICU and HAI rates, and similar rates of mortality. ICU admitted children often had associated co-morbidities, including CLD. Further studies for focused disease surveillance and potential vaccine development for high-risk children are needed. Disclosures All authors: No reported disclosures.


2016 ◽  
Vol 90 (23) ◽  
pp. 10963-10971 ◽  
Author(s):  
Martha I. Nelson ◽  
Karla M. Stucker ◽  
Seth A. Schobel ◽  
Nídia S. Trovão ◽  
Suman R. Das ◽  
...  

ABSTRACT The swine-human interface created at agricultural fairs, along with the generation of and maintenance of influenza A virus diversity in exhibition swine, presents an ongoing threat to public health. Nucleotide sequences of influenza A virus isolates collected from exhibition swine in Ohio ( n = 262) and Indiana ( n = 103) during 2009 to 2013 were used to investigate viral evolution and movement within this niche sector of the swine industry. Phylogenetic and Bayesian analyses were employed to identify introductions of influenza A virus to exhibition swine and study viral population dynamics. In 2013 alone, we identified 10 independent introductions of influenza A virus into Ohio and/or Indiana exhibition swine. Frequently, viruses from the same introduction were identified at multiple fairs within the region, providing evidence of rapid and widespread viral movement within the exhibition swine populations of the two states. While pigs moving from fair to fair to fair is possible in some locations, the concurrent detection of nearly identical strains at several fairs indicates that a common viral source was more likely. Importantly, we detected an association between the high number of human variant H3N2 (H3N2v) virus infections in 2012 and the widespread circulation of influenza A viruses of the same genotype in exhibition swine in Ohio fairs sampled that year. The extent of viral diversity observed in exhibition swine and the rapidity with which it disseminated across long distances indicate that novel strains of influenza A virus will continue to emerge and spread within exhibition swine populations, presenting an ongoing threat to humans. IMPORTANCE Understanding the underlying population dynamics of influenza A viruses in commercial and exhibition swine is central to assessing the risk for human infections with variant viruses, including H3N2v. We used viral genomic sequences from isolates collected from exhibition swine during 2009 to 2013 to understand how the peak of H3N2v cases in 2012 relates to long-term trends in the population dynamics of pandemic viruses recently introduced into commercial and exhibition swine in the United States. The results of our spatial analysis underscore the key role of rapid viral dispersal in spreading multiple genetic lineages throughout a multistate network of agricultural fairs, providing opportunities for divergent lineages to coinfect, reassort, and generate new viral genotypes. The higher genetic diversity of genotypes cocirculating in exhibition swine since 2013 could facilitate the evolution of new reassortants, potentially with even greater ability to cause severe infections in humans or cause human-to-human transmission, highlighting the need for continued vigilance.


2013 ◽  
Vol 7 ◽  
pp. 42-51 ◽  
Author(s):  
Tavis K. Anderson ◽  
Martha I. Nelson ◽  
Pravina Kitikoon ◽  
Sabrina L. Swenson ◽  
John A. Korslund ◽  
...  

2014 ◽  
Vol 27 (3) ◽  
pp. 199-201
Author(s):  
Adrian Jarzynski ◽  
Agata Dubas ◽  
Malgorzata Polz-Dacewicz

ABSTRACT Viruses that cause respiratory tract infections are the most common agents of infectious diseases in humans throughout the world. A virus that infects the respiratory system, may induce various clinical symptoms. What is more, the same symptoms may be caused by different viruses. The aim of the study was to analyze the prevalence of enteroviruses that cause respiratory infections in patients with influenzavirus A/H1N1 hospitalized in the Lublin province. The experimental material was throat and nose swabs taken from patients hospitalized in Lublin and Tomaszow Lubelski. In the group of 44 patients (20 women and 24 men) infected with influenza A/H1N1, the genetic material of enteroviruses was detected in 13 patients (29.5%). Respiratory viruses co-infections are very common in hospitalized patients. Studies show that co-infection with influenza virus and enterovirus are more common in children than in adults. Moreover, viral respiratory tract infections are independent from the patients’ gender.


1992 ◽  
Vol 136 (4) ◽  
pp. 488-497 ◽  
Author(s):  
Stephen M. Wright ◽  
Yoshihiro Kawaoka ◽  
Gerold B. Sharp ◽  
Dennis A. Senne ◽  
Robert G. Webster

Sign in / Sign up

Export Citation Format

Share Document