scholarly journals 1764. The Gut: A Veiled Reservoir for Multidrug-resistant Organisms (MDROs) Below the Tip of the Iceberg

2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S63-S63
Author(s):  
Teppei Shimasaki ◽  
Yoona Rhee ◽  
Rachel D Yelin ◽  
Michelle Ariston ◽  
Stefanie Ollison ◽  
...  

Abstract Background Clinical culture results are sometimes used to estimate the burden of multidrug-resistant organisms (MDROs) in hospitals. The association between positive clinical culture results and prevalence of MDROs in the gut is incompletely understood. Methods Rectal swab or stool samples were collected daily from adult medical intensive care unit (MICU) patients and cultured for target MDROs using selective media between January 2017 and January 2018 at Rush University Medical Center, a 676-bed tertiary-care center in Chicago. Resistance mechanisms were confirmed by phenotypic methods and/or polymerase chain reaction. Clinical culture results during MICU stay were extracted from the hospital information system. Target MDROs included vancomycin-resistant Enterococci (VRE), carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL), carbapenem-resistant Pseudomonas aeruginosa (CRPA) and carbapenem-resistant Acinetobacter baumannii (CRAB). Patients with either a study or clinical culture positive for a target MDRO were analyzed. Results We collected 5,086 study samples from 1,661 unique admissions (1,419 patients) and included here data from 413 unique admissions (397 patients) with completed microbiologic analysis. Median (IQR) patient age was 65 (51–75) years and length of MICU stay was 3 (3–4) days. A total of 156 (37.8%) patients had a target MDRO detected from a study sample at any point; 57 (36.5%) patients had >1 MDRO detected. Overall prevalence of these MDROs was found to be 22.5% VRE, 6.5% CRE, 19.8% ESBL, 4.4% CRPA, and 0.7% CRAB. New MDRO acquisition was observed in 58 (14.6%) patients (figure). Once a target MDRO was detected in a study sample, 82.2% of subsequent study samples were positive for that MDRO. Only 13 (5.8%) patients had a positive clinical culture for any target MDRO during their MICU stay (table). Conclusion Clinical cultures capture only the tip of the resistance iceberg and alone are insufficient to guide MDRO-targeted prevention strategies. Universal infection prevention measures are an alternative that may be preferred in settings where overall prevalence of MDROs is moderate or high and patients may be colonized with >1 MDRO. Disclosures All authors: No reported disclosures.

2020 ◽  
Vol 13 ◽  
pp. 117863372090597 ◽  
Author(s):  
M Bosaeed ◽  
A Ahmad ◽  
A Alali ◽  
E Mahmoud ◽  
L Alswidan ◽  
...  

Introduction: Multidrug-resistant Pseudomonas aeruginosa isolates have multiple resistance mechanisms, and there are insufficient therapeutic options to target them. Ceftolozane-tazobactam is a novel antipseudomonal agent that contains a combination of an oxyimino-aminothiazolyl cephalosporin (ceftolozane) and a β-lactamase inhibitor (tazobactam). Methods: A single-center retrospective observational study between January 2017 and December 2018 for patients who had been diagnosed with carbapenem-resistant P aeruginosa infections and treated with ceftolozane-tazobactam for more than 72 hours. We assessed clinical success based on microbiological clearance as well as the clinical resolution of signs and symptoms of infection. Results: A total of 19 patients fit the inclusion criteria, with a median age was 57 years, and 53% were female. The types of infections were nosocomial pneumonia, acute bacterial skin, and skin structure infections; complicated intra-abdominal infections; and central line–associated bloodstream infections. All of the isolates were resistant to both meropenem and imipenem. The duration of therapy was variable (average of 14 days). At day 14 of starting ceftolozane-tazobactam, 18 of 19 patients had a resolution of signs and symptoms of the infection. Only 14 of 19 patients (74%) had proven microbiological eradication observed at the end of therapy. During therapy, there was no adverse event secondary to ceftolozane-tazobactam, and no Clostridium difficile infection was identified. The 30-day mortality rate was 21% (4/19). Conclusions: Multidrug-resistant P aeruginosa infection is associated with high mortality, which would potentially be improved using a new antibiotic such as ceftolozane-tazobactam. Studies are required to explain the role of combination therapy, define adequate dosing, and identify the proper duration of treatment.


2016 ◽  
Vol 3 (suppl_1) ◽  
Author(s):  
Joseph Timpone ◽  
Rebecca Kumar ◽  
Deepa Lazarous ◽  
Seble Kassaye ◽  
Puneet Agarwal ◽  
...  

2012 ◽  
Vol 4 (01) ◽  
pp. 039-042 ◽  
Author(s):  
Simit H Kumar ◽  
Anuradha S De ◽  
Sujata M Baveja ◽  
Madhuri A Gore

ABSTRACT Introduction: The production of Metallo-β-lactamases (MBLs) is one of the resistance mechanisms of Pseudomonas aeruginosa and Acinetobacter species. There is not much Indian data on the prevalence of MBLs in burns and surgical wards. Materials and Methods: A total of 145 non-duplicate isolates of carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter species, isolated from pus/wound swabs and endotracheal secretions from burns and surgical wards, were tested for MBL production by modified ethylene diamine tetra acetic acid (EDTA) disc synergy and double disc synergy tests. Results: Prevalence of MBLs was 26.9% by both the above tests. All MBL-positive isolates were multidrug resistant. Only 6.06% (2/33) P.aeruginosa and 16.67% (1/06) Acinetobacter species were susceptible to piperacillin-tazobactam and netilmycin, respectively. These patients had multiple risk factors like >8 days hospital stay, catheterization, IV lines, previous antibiotic use, mechanical ventilation, etc. Graft application and surgical intervention were significant risk factors in MBL-positive patients. Overall mortality in MBL-positive patients was 34.21%. Conclusion: Emergence of MBL-producing Pseudomonas aeruginosa and Acinetobacter species in this hospital is alarming, which reflect excessive use of carbapenems and at the same time, pose a therapeutic challenge to clinicians as well as to microbiologists. Therefore, a strict antibiotic policy and implementation of proper infection control practices will go a long way to prevent further spread of MBLs. Detection of MBLs should also become mandatory in all hospitals.


2021 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Hiroaki Baba ◽  
Hajime Kanamori ◽  
Issei Seike ◽  
Ikumi Niitsuma-Sugaya ◽  
Kentaro Takei ◽  
...  

Patients with severe Coronavirus disease 2019 (COVID-19) are at high risk for secondary infection with multidrug-resistant organisms (MDROs). Secondary infections contribute to a more severe clinical course and longer intensive care unit (ICU) stays in patients with COVID-19. A man in his 60s was admitted to the ICU at a university hospital for severe COVID-19 pneumonia requiring mechanical ventilation. His respiratory condition worsened further due to persistent bacteremia caused by imipenem-non-susceptible Klebsiella aerogenes and he required VV-ECMO. Subsequently, he developed a catheter-related bloodstream infection (CRBSI) due to Candida albicans, ventilator-associated pneumonia (VAP) due to multidrug-resistant Pseudomonas aeruginosa (MDRP), and a perianal abscess due to carbapenem-resistant K. aerogenes despite infection control procedures that maximized contact precautions and the absence of MDRO contamination in the patient’s room environment. He was decannulated from VV-ECMO after a total of 72 days of ECMO support, and was eventually weaned off ventilator support and discharged from the ICU on day 138. This case highlights the challenges of preventing, diagnosing, and treating multidrug-resistant organisms and healthcare-associated infections (HAIs) in the critical care management of severe COVID-19. In addition to the stringent implementation of infection prevention measures, a high index of suspicion and a careful evaluation of HAIs are required in such patients.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1016
Author(s):  
Amanda Chamieh ◽  
Rita Zgheib ◽  
Sabah El-Sawalhi ◽  
Laure Yammine ◽  
Gerard El-Hajj ◽  
...  

Introduction: We studied the trend of antimicrobial resistance and consumption at Saint George Hospital University Medical Center (SGHUMC), a tertiary care center in Beirut, Lebanon, with a focus on the SARS-CoV-2 pandemic. Materials and Methods: We calculated the isolation density/1000 patient-days (PD) of the most isolated organisms from 1 January 2015–31 December 2020 that included: E. coli (Eco), K. pneumoniae (Kp), P. aeruginosa (Pae), A. baumannii (Ab), S. aureus (Sau), and E. faecium (Efm). We considered March–December 2020 a surrogate of COVID-19. We considered one culture/patient for each antimicrobial susceptibility and excluded Staphylococcus epidermidis, Staphylococcus coagulase-negative, and Corynebacterium species. We analyzed the trends of the overall isolates, the antimicrobial susceptibilities of blood isolates (BSI), difficult-to-treat (DTR) BSI, carbapenem-resistant Enterobacteriaceae (CRE) BSI, and restricted antimicrobial consumption as daily-defined-dose/1000 PD. DTR implies resistance to carbapenems, beta-lactams, fluoroquinolones, and additional antimicrobials where applicable. Results and Discussion: After applying exclusion criteria, we analyzed 1614 blood cultures out of 8314 cultures. We isolated 85 species, most commonly Eco, at 52%. The isolation density of total BSI in 2020 decreased by 16%: 82 patients were spared from bacteremia, with 13 being DTR. The isolation density of CRE BSI/1000 PD decreased by 64% from 2019 to 2020, while VREfm BSI decreased by 34%. There was a significant decrease of 80% in Ab isolates (p-value < 0.0001). During COVID-19, restricted antimicrobial consumption decreased to 175 DDD/1000 PD (p-value < 0.0001). Total carbapenem consumption persistently decreased by 71.2% from 108DDD/1000 PD in 2015–2019 to 31 DDD/1000 PD in 2020. At SGHUMC, existing epidemics were not worsened by the pandemic. We attribute this to our unique and dynamic collaboration of antimicrobial stewardship, infection prevention and control, and infectious disease consultation.


2021 ◽  
Vol 18 (4) ◽  
pp. 429-436
Author(s):  
Santhiya K. ◽  
Jayanthi S. ◽  
Ananthasubramanian M. ◽  
Appalaraju B.

Background: Carbapenem-resistant Enterobacteriaceae (CRE) has emerged as a global threat with mortality risk ranging from 48%-71% worldwide. The emergence of MBL resistance is threatening as carbapenem is one of the last line antibiotics. A total 24 variants of NDM resistance raises a concern to the clinicians and epidemiologists worldwide. Objective: The study aims at identifying MBL resistance (NDM, IMP, VIM, GIM, SPM, and SIM) and its coexistence in clinical isolates in a single tertiary care center. Methodology: Forty five clinical isolates characterized phenotypically for Carbapenem resistance obtained from PSG Institute of Medical Science and Research (PSG IMSR), Coimbatore, between February to March 2018 were taken for analysis. Result: Out of the 45 Clinical isolates, 38 isolates (84%) were detected as MBL carriers. VIM, NDM, GIM, and SPM were the predominant resistance genes, with detection rates of 48.8%, 28.8%, 24.4%, and 22.2% respectively. Fifteen isolates were observed to harbor more than one MBL gene in coexistence. Two isolates - U42 and R714 (K. pneumoniae) were found to harbor all 5 MBL variants in combination. Conclusion: 33% of clinical isolates harboring multiple MBL variants is a concern in clinical settings. The presence of SPM and GIM gene amongst isolates in this geographical location within India is an indicator demanding continuous monitoring of these resistance determinants.


Author(s):  
Akane Takamatsu ◽  
Hitoshi Honda ◽  
Tomoya Kojima ◽  
Kengo Murata ◽  
Hilary Babcock

Abstract Objective The COVID-19 vaccine may hold the key to ending the pandemic, but vaccine hesitancy is hindering the vaccination of healthcare personnel (HCP). Design Before-after trial Participants and setting Healthcare personnel at a 790-bed tertiary care center in Tokyo, Japan. Interventions A pre-vaccination questionnaire was administered to HCP to examine their perceptions of the COVID-19 vaccine. Then, a multifaceted intervention involving (1) distribution of informational leaflets to all HCP, (2) hospital-wide announcements encouraging vaccination, (3) a mandatory lecture, (4) an educational session about the vaccine for pregnant or breastfeeding HCP, and (5) allergy testing for HCP at risk of allergic reactions to the vaccine was implemented. A post-vaccination survey was also performed. Results Of 1,575 HCP eligible for enrollment, 1,224 (77.7%) responded to the questionnaire, 43.5% (n =533) expressed willingness to be vaccinated, 48.4% (n = 593) were uncertain, and 8.0% (n=98) expressed unwillingness to be vaccinated. The latter two groups were concerned about the vaccine’s safety rather than its efficacy. Post-intervention, the overall vaccination rate reached 89.7% (1,413/1,575), with 88.9% (614/691) of the pre-vaccination survey respondents who answered “unwilling” or “unsure” eventually receiving a vaccination. In the post-vaccination questionnaire, factors contributing to increased COVID-19 vaccination included information and endorsement of vaccination at the medical center (26.4%; 274/1,037). Conclusions The present, multifaceted intervention increased COVID-19 vaccinations among HCP at a Japanese hospital. Frequent support and provision of information were crucial for increasing the vaccination rate and may be applicable to the general population as well.


2020 ◽  
Vol 41 (S1) ◽  
pp. s305-s305
Author(s):  
Karoline Sperling ◽  
Amy Priddy ◽  
Nila Suntharam ◽  
Adam Karlen

Background: With increasing medical tourism and international healthcare, emerging multidrug resistant organisms (MDROs) or “superbugs” are becoming more prevalent. These MDROs are unique because they are resistant to antibiotics and can carry special resistance mechanisms. In April 2019, our hospital was notified that a superbug, New Delhi Metallo-β-lactamase(NDM)–producing carbapenem-resistant Enterobacteriaceae (CRE), was identified in a patient who had been transferred to another hospital after being at our hospital for 3 weeks. Our facility had a CRE admission screening protocol in place since 2013, but this patient did not meet the criteria to be screened on admission. Methods: The infection prevention (IP) team consulted with the Minnesota Department of Health (MDH) and gathered stakeholders to discuss containment strategies using the updated 2019 CDC Interim Guidance for Public Health Response to Contain Novel or Targeted Multidrug-resistant Organisms (MDROs) to determine whether transmission to other patients had occurred. NDM CRE was classified under tier 2 organisms, meaning those primarily associated with healthcare settings and not commonly identified in the region, and we used this framework to conduct an investigation. A point-prevalence study was done in an intensive care unit that consisted of rectal screening of 7 patients for both CRE and Candida auris, another emerging MDRO. These swabs were sent to the Antibiotic Resistance Laboratory Network (ARLN) Central Regional Lab at MDH for testing. An on-site infection control risk assessment was done by the MDH Infection Control Assessment and Response (ICAR) team. Results: All 7 patients were negative for both CRE and C. auris, and no further screening was done. During the investigation, it was discovered that the patient had had elective ambulatory surgery outside the United States in March 2019. The ICAR team assessment provided overall positive feedback to the nursing unit about isolation procedures, cleaning products, and hand hygiene product accessibility. Opportunities included set-up of soiled utility room and updating our process to the 2019 MDH recommendation to screen patients for CRE and C. auris on admission who have been hospitalized, had outpatient surgery, or hemodialysis outside the United States in the previous year. Conclusions: Point-prevalence study results showed no transmission of CRE and highlighted the importance of standard precautions. This event supports the MDH recommendation to screen for CRE any patients who have been hospitalized, had outpatient surgery, or had hemodialysis outside the United States in the previous year.Funding: NoneDisclosures: None


2018 ◽  
Vol 40 (2) ◽  
pp. 164-170 ◽  
Author(s):  
Shik Luk ◽  
Viola Chi Ying Chow ◽  
Kelvin Chung Ho Yu ◽  
Enoch Know Hsu ◽  
Ngai Chong Tsang ◽  
...  

AbstractObjectiveTo determine the efficacy of 2 types of antimicrobial privacy curtains in clinical settings and the costs involved in replacing standard curtains with antimicrobial curtains.DesignA prospective, open-labeled, multicenter study with a follow-up duration of 6 months.SettingThis study included 12 rooms of patients with multidrug-resistant organisms (MDROs) (668 patient bed days) and 10 cubicles (8,839 patient bed days) in the medical, surgical, neurosurgical, orthopedics, and rehabilitation units of 10 hospitals.MethodCulture samples were collected from curtain surfaces twice a week for 2 weeks, followed by weekly intervals.ResultsWith a median hanging time of 173 days, antimicrobial curtain B (quaternary ammonium chlorides [QAC] plus polyorganosiloxane) was highly effective in reducing the bioburden (colony-forming units/100 cm2, 1 vs 57; P < .001) compared with the standard curtain. The percentages of MDRO contamination were also significantly lower on antimicrobial curtain B than the standard curtain: methicillin-resistant Staphylococcus aureus, 0.5% vs 24% (P < .001); carbapenem-resistant Acinetobacter spp, 0.2% vs 22.1% (P < .001); multidrug-resistant Acinetobacter spp, 0% vs 13.2% (P < .001). Notably, the median time to first contamination by MDROs was 27.6 times longer for antimicrobial curtain B than for the standard curtain (138 days vs 5 days; P = .001).ConclusionsAntimicrobial curtain B (QAC plus polyorganosiloxane) but not antimicrobial curtain A (built-in silver) effectively reduced the microbial burden and MDRO contamination compared with the standard curtain, even after extended use in an active clinical setting. The antimicrobial curtain provided an opportunity to avert indirect costs related to curtain changing and laundering in addition to improving patient safety.


Sign in / Sign up

Export Citation Format

Share Document