Phylogeny based on ultra-conserved elements clarifies the evolution of rails and allies (Ralloidea) and is the basis for a revised classification

The Auk ◽  
2021 ◽  
Author(s):  
Jeremy J Kirchman ◽  
Nancy Rotzel McInerney ◽  
Thomas C Giarla ◽  
Storrs L Olson ◽  
Elizabeth Slikas ◽  
...  

Abstract The rails (Family Rallidae) are the most diverse and widespread group in the Gruiformes. Their extensive fossil history, global geographic distribution, and tendency to rapidly evolve flightless species on islands make them an attractive subject of evolutionary studies, but the rarity of modern museum specimens of so many rail species has, until recently, limited the scope of molecular phylogenetics studies. As a result, the classification of rails remains one of the most unsettled among major bird radiations. We extracted DNA from museum specimens of 82 species, including 27 from study skins collected as long ago as 1875, and generated nucleotide sequences from thousands of homologous ultra-conserved elements (UCEs). Our phylogenetic analyses, using both concatenation and multispecies coalescent approaches, resulted in well-supported and highly congruent phylogenies that resolve the major lineages of rails and reveal several currently recognized genera to be polyphyletic. A fossil-calibrated time tree is well-resolved and supports the hypothesis that rails split into 2 major lineages (subfamilies Himantornithinae and Rallinae) ~34 mya, but clade age estimates have wide confidence intervals. Our results, combined with results of other recently published phylogenomics studies of rails and other Gruiformes, form the basis for a proposed classification of the Rallidae that recognizes 40 genera in 9 tribes.

2021 ◽  
Author(s):  
Brendon E Boudinot ◽  
Marek L Borowiec ◽  
Matthew M Prebus

Within the Formicidae, the higher classification of nearly all subfamilies has been recently revised due to the findings of molecular phylogenetics. Here, we integrate morphology and molecular data to holistically address the evolution and classification of the ant genus Lasius, its tribe Lasiini, and their subfamily Formicinae. We accomplish this through a critical re-examination of morphology of extant and fossil taxa, molecular phylogenetic analyses, total-evidence dating under fossilized birth-death process, phylogeography, and ancestral state estimation. We use these results to provide revised taxonomic definitions for the Lasiini and select genera, and we provide a key to the genera of the Lasiini with emphasis on the Lasius genus group. We find that the crown Lasiini originated around the end of the Cretaceous on the Eurasian continent and is divisible into four morphologically distinct clades: Cladomyrma, the Lasius genus group, the Prenolepis genus group, and a previously undetected lineage we name XXXgen. n. The crown of the Lasius genus group is considerably younger than that of the Prenolepis genus group, indicating that extinction has played a major role in the evolution of the former clade. Lasius itself is divided into two well-supported monophyletic groups which are approximately equally speciose. We present evidence that temporary social parasitism and fungiculture arose in Lasius two times independently. Additionally, we recover the paraphyly of three Lasius subgenera and propose replacing all subgenera with an informal species group classification: Lasius = Acanthomyopssyn. rev., = Austrolasiussyn. n., = Cautolasiussyn. n., = Chthonolasius vsyn. n., = Dendrolasiussyn. n. Total-evidence analysis reveals that the Baltic-region amber fossil species Lasius pumilus and Pseudolasius boreus are misplaced to genus; we therefore designate XXXgen. n. for the former and XXXgen. n. for the latter. Further, we transfer XXX and Glaphyromyrmex out of the tribe, considering the former to be incertae sedis in the subfamily, and the latter a member of the Formicini (tribal transfer). Two final taxonomic actions are deemed necessary: synonymy of Lasius escamole Reza, 1925 with Liometopum apiculatum Mayr, 1870 syn. n. (subfamilial transfer), and transfer of Paratrechina kohli to Anoplolepis (tribal transfer, forming A. kohli (Forel, 1916) n. comb.).


2018 ◽  
Author(s):  
Dominik Schrempf ◽  
Bui Quang Minh ◽  
Arndt von Haeseler ◽  
Carolin Kosiol

AbstractMolecular phylogenetics has neglected polymorphisms within present and ancestral populations for a long time. Recently, multispecies coalescent based methods have increased in popularity, however, their application is limited to a small number of species and individuals. We introduced a polymorphism-aware phylogenetic model (PoMo), which overcomes this limitation and scales well with the increasing amount of sequence data while accounting for present and ancestral polymorphisms. PoMo circumvents handling of gene trees and directly infers species trees from allele frequency data. Here, we extend the PoMo implementation in IQ-TREE and integrate search for the statistically best-fit mutation model, the ability to infer mutation rate variation across sites, and assessment of branch support values. We exemplify an analysis of a hundred species with ten haploid individuals each, showing that PoMo can perform inference on large data sets. While PoMo is more accurate than standard substitution models applied to concatenated alignments, it is almost as fast. We also provide bmm-simulate, a software package that allows simulation of sequences evolving under PoMo. The new options consolidate the value of PoMo for phylogenetic analyses with population data.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3479
Author(s):  
Mohammed Ahmed ◽  
Oleksandr Holovachov

Molecular phylogenetics brought radical changes to our understanding of nematode evolution, resulting in substantial modifications to nematode classification implemented by De Ley and Blaxter and widely accepted now. Numerous phylogenetic studies were subsequently published that both improved and challenged this classification. Here we present a summary of these changes. We created cladograms that summarise phylogenetic relationships within Nematoda using phylum-wide to superfamily-wide molecular phylogenies published in since 2005, and supplemented with the phylogenetic analyses for Enoplia and Chromadoria with the aim of clarifying the position of several taxa. The results show which parts of the Nematode tree are well resolved and understood, and which parts require more research, either by adding taxa that have not been included yet (increasing taxon coverage), or by changing the phylogenetic approach (improving data quality, using different types of data or different methods of analysis). The currently used classification of the phylum Nematoda in many cases does not reflect the phylogeny and in itself requires numerous improvements and rearrangements.


2009 ◽  
Vol 123 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Sandra Namoff ◽  
Quentin Luke ◽  
Francisco Jiménez ◽  
Alberto Veloz ◽  
Carl E. Lewis ◽  
...  

Author(s):  
Timothy L Collins ◽  
Jeremy J Bruhl ◽  
Alexander N Schmidt-Lebuhn ◽  
Ian R H Telford ◽  
Rose L Andrew

Abstract Golden everlasting paper daisies (Xerochrysum, Gnaphalieae, Asteraceae) were some of the earliest Australian native plants to be cultivated in Europe. Reputedly a favourite of Napoléon Bonaparte and Empress Joséphine, X. bracteatum is thought to have been introduced to the island of St Helena in the South Atlantic during Napoléon’s exile there. Colourful cultivars were developed in the 1850s, and there is a widely held view that these were produced by crossing Xerochrysum with African or Asian Helichrysum spp. Recent molecular phylogenetic analyses and subtribal classification of Gnaphalieae cast doubt on this idea. Using single-nucleotide polymorphism (SNP) data, we looked for evidence of gene flow between modern cultivars, naturalized paper daisies from St Helena and four Xerochrysum spp. recorded in Europe in the 1800s. There was strong support for gene flow between cultivars and X. macranthum. Paper daisies from St Helena were genotypically congruent with X. bracteatum and showed no indications of ancestry from other species or from the cultivars, consistent with the continuous occurrence of naturalized paper daisies introduced by Joséphine and Napoléon. We also present new evidence for the origin of colourful Xerochrysum cultivars and hybridization of congeners in Europe from Australian collections.


Genome ◽  
2010 ◽  
Vol 53 (3) ◽  
pp. 180-202 ◽  
Author(s):  
Bernard R. Baum ◽  
Tara Edwards ◽  
Douglas A. Johnson

To complete our study of the genus Hordeum and to elaborate a phylogeny of species based upon 5S rDNA sequences, we have cloned and sequenced PCR amplicons from seven American polyploid species to generate 164 new 5S rRNA gene sequences. These sequences were analysed along with the more than 2000 5S rDNA sequences previously generated from the majority of species in Hordeum to provide a comprehensive picture of the distribution (presence or absence) of 5S rDNA unit classes (orthologous groups) in this genus as well as insights into the phylogeny of Hordeum. Testing of substitution models for each unit class based upon the consensus sequences of all the taxa as well as for each unit class within the genus found that the general best fit was TPM3uf+G, from which a maximum-likelihood tree was calculated. A novel application of cophylogenetic analysis, where relationships among unit classes were treated as host–parasite interactions, depicted some significant pair links under tests of randomness indicative of nonrandom codivergence among several unit classes within the same taxon. The previous classification of four genomic groups is reflected in combinations of unit classes, and it is proposed that current taxa developed from ancient diploidized paleopolyploids and that some were subjected to gene loss, i.e., unit class loss. Finally, separate phylogenetic analyses performed for the tetraploid and hexaploid species were used to derive a working model describing the phylogeny of the polyploid taxa from their putative diploid ancestry.


Author(s):  
M. Belaganahalli ◽  
S. Maan ◽  
P. P.C. Mertens

Viruses that are normally safely contained within their host spe­cies can emerge due to intense livestock farming, trade, travel, climate change and encroachment of human activities into new environments. The unexpected emergence of bluetongue virus (BTV), the prototype species of the genus Orbivirus, in economi­cally important livestock species (sheep and cattle) across the whole of Europe (since 1998), indicates that other orbiviruses represent a potential further threat to animal and human popula­tions in Europe and elsewhere. The genus Orbivirus is the largest within the family Reoviridae, containing 22 virus species, as well as 14 unclassified orbiviruses, some of which may repre­sent additional or novel species. The orbiviruses are transmitted primarily by arthropod vectors (e.g. Culicoides, mosquitoes or ticks).  Viral genome sequence data provide a basis for virus taxonomy and diagnostic test development, and make it possible to address fundamental questions concerning virus biology, pathogenesis, virulence and evolution, that can be further explored in mutation and reverse genetics studies. Genome sequences also provide criteria for the classification of novel isolates within individual Orbivirus species, as well as the identification of different sero­types, topotypes, reassortants and even closely related but dis­tinct virus lineages.  Full-length genome characterization of Tilligerry virus (TILV), a member of the Eubenangee virus species, and Mitchell River virus (MRV), a member of the Warrego virus species, have revealed highly conserved 5’ and 3’ terminal hexanucleotide sequences. Phylogenetic analyses of orbivirus T2 ‘sub-core-shell’ protein sequences reinforce the hypothesis that this protein is an important evolutionary marker for these viruses. The T2 protein shows high levels of amino acid (AA) sequence identity (> 91%) within a single Orbivirus species / serogroup, which can be used for species identification. The T2-protein gene has therefore been given priority in sequencing studies. The T2 protein of TILV is closely related to that of Eubenangee virus (~91% identity), con­firming that they are both members of the same Eubenangee virus species. Although TILV is reported to be related to BTV in serological assays, the TILV T2 protein shows only 68-70% AA identity to BTV. This supports its current classification within a different serogroup (Eubenangee).  Warrego virus and MRV are currently classified as two distinct members (different serotypes) within the Warrego virus species. However, they show only about 79% AA identity in their T2 pro­tein (based on partial sequences). It is therefore considered likely that they could be reclassified as members of distinct Orbivirus species. The taxonomic classification of MRV will be reviewed after generating full length sequences for the entire genomes of both viruses. The taxonomic status of each of these viruses will also be tested further by co-infections and attempts to create reassortants between them (only viruses belonging to the same species can reassort their genome segments). TILV and MRV are the first viruses from their respective serogroups / virus species to be genetically fully characterized, and will provide a basis for the further characterization / identification of additional viruses within each group / species. These data will assist in the devel­opment of specific diagnostic assays and potentially in control of emerging diseases. The sequences generated will also help to evaluate current diagnostic [reverse transcriptase - polymerase chain reaction (RT-PCR)] tests for BTV, African horse sickness virus, epizootic haemorrhagic disease virus, etc., in silico, by identifying any possibility of cross reactivity.


2021 ◽  
Vol 9 (08) ◽  
pp. 505-514
Author(s):  
Nguyen Chi Mai ◽  
◽  
NinhThi Ngoc ◽  
Nguyen Xuan Cuong ◽  
Nguyen Hoai Nam ◽  
...  

Vietnam contains diverse marine ecosystems with the high biodiversity of marine organisms, including gorgonian corals of Alcyonacea order. In order to support traditional classification of these corals, in this study mitochondrial barcoding markers msh1 and nuclear 28S rDNA were developed for analysis of 11 specimens collected in 2015 and 2016 from different islands and bays along the North Central coast of Vietnam. Phylogenetic analyses based on msh1 and 28S sequence polymorphism showed that all specimens belonged to Anthozoa class, Octocorallia sub-class and Alcyonacea order. At lower taxa levels, they were divided into 4 sub-orders, 7 families and 7 genera according to 7 distinct clades with bootstrap values from 99-100%.The identifications of 7 out of 11 specimens including Sinularia brassica (2 specimens)and Sinularialeptoclados, Dichotellagemmacea, Annella reticulata, S. conferta and S. nanolobata were in concordance between morphological and molecular methods. The other 4 specimens were only identified at genus levels of Astrogorgia sp., Melithaea sp. Scleronephthya sp. and Muricella sp. by either msh1-morphology or msh1-28S markers. These results highlight the importance of molecular markers to elucidate patterns of biodiversity and species identification of soft coral.


2011 ◽  
Vol 140 (6) ◽  
pp. 1013-1017 ◽  
Author(s):  
S. E. MIDGLEY ◽  
C. K. HJULSAGER ◽  
L. E. LARSEN ◽  
G. FALKENHORST ◽  
B. BÖTTIGER

SUMMARYGroup A rotaviruses infect humans and a variety of animals. In July 2006 a rare rotavirus strain with G8P[14] specificity was identified in the stool samples of two adult patients with diarrheoa, who lived in the same geographical area in Denmark. Nucleotide sequences of the VP7, VP4, VP6, and NSP4 genes of the identified strains were identical. Phylogenetic analyses showed that both Danish G8P[14] strains clustered with rotaviruses of animal, mainly, bovine and caprine, origin. The high genetic relatedness to animal rotaviruses and the atypical epidemiological features suggest that these human G8P[14] strains were acquired through direct zoonotic transmission events.


Zootaxa ◽  
2012 ◽  
Vol 3205 (1) ◽  
pp. 41 ◽  
Author(s):  
PATRICK S. FITZE ◽  
VIRGINIA GONZALEZ-JIMENA ◽  
LUIS M. SAN-JOSE ◽  
DIEGO SAN MAURO ◽  
RAFAEL ZARDOYA

A new species of lacertid lizard of the genus Psammodromus is described from the Iberian Peninsula. Genetic and recentlypublished phenotypic data support the differentiation of Psammodromus hispanicus into three, and not as previously sug-gested two, distinct lineages. Age estimates, lineage allopatry, the lack of mitochondrial and nuclear haplotype sharingbetween lineages, ecological niche divergence, and the current biogeographic distribution, indicated that the three lineagescorrespond to three independent species. Here, we describe a new species, Psammodromus occidentalis sp. n., which isgenetically different from the other sand racers and differentiated by the number of femoral pores, number of throat scales,snout shape, head ratio, green nuptial coloration, and number of supralabial scales below the subocular scale. We also pro-pose to upgrade the two previously recognized subspecies, Psammodromus hispanicus hispanicus Fitzinger, 1826 fromcentral Spain and Psammodromus hispanicus edwardsianus (Dugès, 1829) from eastern Spain, to the species level: Psam-modromus hispanicus stat. nov. and Psammodromus edwardsianus stat. nov. Given that the holotype of Psammodromushispanicus was lost, we designate a neotype. We also analysed museum specimens of P. blanci, P. microdactylus and P. algirus to describe differentiation of the Psammodromus hispanicus lineages/species from their closest relatives.


Sign in / Sign up

Export Citation Format

Share Document