From Knowing to Feeling

Author(s):  
Stephen Grossberg

Visual and auditory processes represent sensory information, but do not evaluate its importance for survival or success. Interactions between perceptual/cognitive and evaluative reinforcement/emotional/motivational mechanisms accomplish this. Cognitive-emotional resonances support conscious feelings, knowing their source, and controlling motivation and responses to acquire valued goals. Also explained is how emotions may affect behavior without being conscious, and how learning adaptively times actions to achieve desired goals. Breakdowns in cognitive-emotional resonances can cause symptoms of mental disorders such as depression, autism, schizophrenia, and ADHD, including explanations of how affective meanings fail to organize behavior when this happens. Historic trends in the understanding of cognition and emotion are summarized, including work of Chomsky and Skinner. Brain circuits of conditioned reinforcer learning and incentive motivational learning are modeled, including the inverted-U in conditioning as a function of interstimulus interval, secondary conditioning, and attentional blocking and unblocking. How humans and animals act as minimal adaptive predictors is explained using the CogEM model’s interactions between sensory cortices, amygdala, and orbitofrontal cortex. Cognitive-emotional properties solve phylogenetically ancient Synchronization and Persistence Problems using circuits that are conserved between mollusks and humans. Avalanche command circuits for learning arbitrary sequences of sensory-motor acts, dating back to crustacea, increase their sensitivity to environmental feedback as they morph over phylogeny into mammalian cognitive and emotional circuits. Antagonistic rebounds drive affective extinction. READ circuits model how life-long learning occurs without associative saturation or passive forgetting. Affective memories of opponent emotions like fear vs. relief can then persist until they are disconfirmed by environmental feedback.

2000 ◽  
Vol 84 (3) ◽  
pp. 1266-1278 ◽  
Author(s):  
Walter J. Freeman ◽  
John M. Barrie

Arrays of 64 electrodes (8 × 8, 7 × 7 mm) were implanted epidurally on the surface of the visual, auditory or somatosensory cortex of rabbits trained to discriminate conditioned stimuli in the corresponding modality. The 64 electroencephalographic (EEG) traces at all times displayed a high degree of spatial coherence in wave form, averaging >90% of the variance in the largest principal components analysis component. The EEGs were decomposed with the fast Fourier transform (FFT) to give the spatial distributions of amplitude and phase modulation (AM and PM) in segments 128 ms in duration. Spatial (2-dimensional) and temporal (1-dimensional) filters were designed to optimize classification of the spatial AM patterns in the gamma range (20–80 Hz) with respect to discriminative conditioned stimuli. No evidence was found for stimulus-dependent classification of the spatial PM patterns. Instead some spatial PM distributions conformed to the pattern of a cone. The location and sign (maximal lead or lag) of the conic apex varied randomly with each recurrence. The slope of the phase gradient varied in a range corresponding to that of the conduction velocities reported of axons to extend parallel to the cortical surfaces. The durations and times of recurrence of the phase cones corresponded to those of the optimally classified spatial AM patterns. The interpretation is advanced that the phase cones are manifestations of state transitions in the mesoscopic dynamics of sensory cortices by which the intermittent AM patterns are formed. The phase cones show that the gamma EEG spatial coherence is not due to volume conduction from a single deep-lying dipole generator nor to activity at the site of the reference lead on monopolar recording. The random variation of the apical sign shows that gamma AM patterns are self-organized and are not imposed by thalamic pacemakers. The half-power radius of the phase gradient provides a useful measure of the soft boundary condition for the formation and read-out of cooperative cortical domains responsible for binding sensory information into the context of prior experience in the process of perception.


2021 ◽  
Author(s):  
Ana Clemente ◽  
Marcus Thomas Pearce ◽  
Martin Skov ◽  
Marcos Nadal

Evaluative judgment—i.e., assessing to what degree a stimulus is liked or disliked—is a fundamental aspect of cognition, facilitating comparison and choosing among alternatives, deciding, and prioritizing actions. Neuroimaging studies have shown that evaluative judgment involves the projection of sensory information to the reward circuit. To investigate whether evaluative judgments are based on modality-specific or modality-general attributes, we compared the extent to which balance, contour, symmetry, and complexity affect liking responses in the auditory and visual modalities. We found no significant correlation for any of the four attributes across sensory modalities, except for contour. This suggests that evaluative judgments primarily rely on modality-specific sensory representations elaborated in the brain’s sensory cortices and relayed to the reward circuit, rather than abstract modality-general representations. The individual traits art experience, openness to experience, and desire for aesthetics were associated with the extent to which design or compositional attributes influenced liking, but inconsistently across sensory modalities and attributes, also suggesting modality-specific influences.


2019 ◽  
Author(s):  
Ian Omer Massé ◽  
Sohen Blanchet-Godbout ◽  
Gilles Bronchti ◽  
Denis Boire

AbstractSensory information is conveyed from peripheral receptors through specific thalamic relays to primary areas of the cerebral cortex. Information is then routed to specialized areas for the treatment of specific aspects of the sensory signals and to multisensory associative areas. Information processing in primary sensory cortices is influenced by contextual information from top-down projections of multiple cortical motor and associative areas as well as areas of other sensory modalities and higher order thalamic nuclei. The primary sensory cortices are thus located at the interface of the ascending and descending pathways. The theory of predictive coding implies that the primary areas are the site of comparison between the sensory information expected as a function of the context and the sensory information that comes from the environment. To better understand the anatomical basis of this model of sensory systems we have charted the cortical and subcortical afferent inputs in the ipsilateral and contralateral hemispheres of the primary somatosensory cortex of adult C57Bl/6 mice. Iontophoretic injections of the b-fragment of cholera toxin were performed inside the mystacial caudal barrel field, more rostral barrel field and somatosensory cortex outside the barrel field to test the hypothesis that differences exist between these three parts and to compare their projections to the subnetworks built from the Mouse Connectome Project data. The laminar distribution of retrogradely labeled cell bodies was used to classify the projections as feedback, feedforward or lateral. Layer indices range between −1 and 1, indicating feedback and feedforward connections respectively. The primary somatosensory cortex and the barrel field have afferent connections with somatosensory areas, non-somatosensory primary sensory areas, multisensory, motor, associative, and neuromodulatory areas. The caudal part of the barrel field displays different and more abundant cortical and subcortical connections compared to the rest of the primary somatosensory cortex. Layer indices of cortical projections to the primary somatosensory cortex and the barrel field were mainly negative and very similar for ipsilateral and contralateral projections. These data demonstrate that the primary somatosensory cortex receives sensory and non-sensory information from cortical and subcortical sources.


2021 ◽  
Author(s):  
Leonidas M. A. Richter ◽  
Julijana Gjorgjieva

Diverse interneuron subtypes determine how cortical circuits process sensory information depending on their connectivity. Sensory deprivation experiments are ideally suited to unravel the plasticity mechanisms which shape circuit connectivity, but have yet to consider the role of different inhibitory subtypes. We investigate how synaptic changes due to monocular deprivation affect the firing rate dynamics in a microcircuit network model of the visual cortex. We demonstrate that, in highly recurrent networks, deprivation-induced plasticity generates fundamentally different activity changes depending on interneuron composition. Considering parvalbumin-positive (PV+) and somatostatin-positive (SST+) interneuron subtypes can capture the experimentally observed independent modulation of excitatory and inhibitory activity during sensory deprivation when SST+ feedback is sufficiently strong. Our model also applies to whisker deprivation in the somatosensory cortex revealing that these mechanisms are general across sensory cortices. Therefore, we provide a mechanistic explanation for the differential role of interneuron subtypes in regulating cortical dynamics during deprivation-induced plasticity.


Author(s):  
Maya Opendak ◽  
Regina Sullivan

Traumatic experiences can be challenging at any age, but recent evidence has highlighted the trauma experienced from an attachment figure as particularly detrimental. Fear, or threat, conditioning is a major experimental paradigm that has uncovered the neurobiology of trauma processing. This controlled paradigm has enabled us to understand the changing neurobiology of trauma processing as well as the developmental importance of caregiver presence during trauma. Maternal presence buffers the infant during brief trauma exposure, although repeated trauma in her presence programs the enduring trauma effects on the neurobiology of cognition and emotion. We review the data on innate and learned fear responses across development and describe the interaction between trauma and attachment in early life when threatening cues are processed by the attachment circuitry, rather than fear circuitry, within the brain. This approach can provide insight into age-specific treatments and interventions following infant trauma in the presence of a caregiver.


2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Mariana Antonia Aguiar-Furucho ◽  
Francisco Javier Ropero Peláez

Several research studies point to the fact that sensory and cognitive reductions like cataracts, deafness, macular degeneration, or even lack of activity after job retirement, precede the onset of Alzheimer’s disease. To simulate Alzheimer’s disease earlier stages, which manifest in sensory cortices, we used a computational model of the koniocortex that is the first cortical stage processing sensory information. The architecture and physiology of the modeled koniocortex resemble those of its cerebral counterpart being capable of continuous learning. This model allows one to analyze the initial phases of Alzheimer’s disease by “aging” the artificial koniocortex through synaptic pruning, by the modification of acetylcholine and GABA-A signaling, and by reducing sensory stimuli, among other processes. The computational model shows that during aging, a GABA-A deficit followed by a reduction in sensory stimuli leads to a dysregulation of neural excitability, which in the biological brain is associated with hypermetabolism, one of the earliest symptoms of Alzheimer’s disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Manuel Teichert ◽  
Jürgen Bolz

On our way through a town, the things we see can make us change the way we go. The things that we hear can make us stop or walk on, or the things we feel can cause us to wear a warm jacket or just a t-shirt. All these behaviors are mediated by highly complex processing mechanisms in our brain and reflect responses to many important sensory inputs. The mammalian cerebral cortex, which processes the sensory information, consists of largely specialized sensory areas mainly receiving information from their corresponding sensory modalities. The first cortical regions receiving the input from the outer world are the so called primary sensory cortices. Strikingly, there is convincing evidence that primary sensory cortices do not work in isolation but are substantially affected by other sensory modalities. Here, we will review previous and current literature on this cross-modal interplay.


2020 ◽  
Author(s):  
Chao Huang ◽  
Bernhard Englitz ◽  
Andrey Reznik ◽  
Fleur Zeldenrust ◽  
Tansu Celikel

Transformation of postsynaptic potentials (PSPs) into action potentials (APs) is the rate-limiting step of communication in neural networks. The efficiency of this intracellular information transfer also powerfully shapes stimulus representations in sensory cortices. Using whole-cell recordings and information-theoretic measures, we show herein that somatic PSPs accurately represent stimulus location on a trial-by-trial basis in single neurons even 4 synapses away from the sensory periphery in the whisker system. This information is largely lost during AP generation but can be rapidly (<20 ms) recovered using complementary information in local populations in a cell-type-specific manner. These results show that as sensory information is transferred from one neural locus to another, the circuits reconstruct the stimulus with high fidelity so that sensory representations of single neurons faithfully represent the stimulus in the periphery, but only in their PSPs, resulting in lossless information processing for the sense of touch in the primary somatosensory cortex.


2020 ◽  
Vol 26 (4) ◽  
pp. 359-379 ◽  
Author(s):  
Gerard Derosiere ◽  
Julie Duque

Interactive behaviors rely on the operation of several processes allowing the control of actions, including their selection, withholding, and cancellation. The corticospinal system provides a unique route through which multiple brain circuits can exert control over bodily motor acts. In humans, the influence of these modulatory circuits on the corticospinal system can be probed using various transcranial magnetic stimulation (TMS) protocols. Here, we review neural data from TMS studies at the basis of our current understanding of how diverse pathways—including intra-cortical, trans-cortical, and subcortico-cortical circuits—contribute to action control by tuning the activity of the corticospinal system. Critically, when doing so, we point out important caveats in the field that arise from the fact that these circuits, and their impact on the corticospinal system, have not been considered equivalently for action selection, withholding, and cancellation. This has led to the misleading view that some circuits or regions are specialized in specific control processes and that they produce particular modulatory changes in corticospinal excitability (e.g., generic vs. specific modulation of corticospinal excitability). Hence, we point to the need for more transversal research approaches in the field of action control.


Sign in / Sign up

Export Citation Format

Share Document