High-Pressure FTIR Studies of the Secondary Structure of Proteins

Author(s):  
Yoshihiro Taniguchi ◽  
Naohiro Takeda

Infrared spectra of five globular proteins (bovine pancreas ribonuclease A, horse skeletal muscle myoglobin, bovine pancreas insulin, horse heart cytochrome c, egg white lysozyme) in 5% D2O solutions (pD 7.0) were measured as a function of pressure up to 1470 MPa at 30 °C. According to the second-derivative spectral changes in the observed amide I band of the proteins, which indicate that the α-helix and β-sheet substructures of the secondary structures break dramatically into the random coil conformation, ribonuclease A and myoglobin are denatured reversibly at 850 MPa and 350 MPa, respectively. Lysozyme denatures partially and reversibly at 670 MPa, as shown by decrease in the α-helix and β-turn substructures, but no change occurs in the random coil and β-sheet substructures. The secondary structure of cytochrome c is not disrupted at pressures up to 1470 MPa, and partial transformation of the α-helix of insulin to random coil starts at 960 MPa. Hydrogen-deuterium exchange of protons on the amide groups in the protein interior is increased by external pressure and is associated with the pressure-induced protein conformational changes. A number of studies on the effects of pressure on protein denaturation have been carried out using various high-pressure detection methods: ultraviolet absorbance spectroscopy (Brandts et al., 1970; Hawley, 1971), visible absorbance spectroscopy (Zipp & Kauzmann, 1973), fluorescence intensity spectroscopy (Li et al., 1976), polarization fluorescence spectroscopy (Chryssomallis et al., 1981), and enzyme activity assays (Taniguchi & Suzuki, 1983; Makimoto et al., 1989). These techniques have the great advantage of being applicable to pressure-induced reversible denaturation of proteins to identify the thermodynamic parameters, especially the volume change and compressibility of a protein in solution, because the experiments can be run under dilute conditions at a protein concentration of less than 0.05% w/v. Therefore, these data reflect the intramolecular phenomena of reversible pressure changes and provide the volume changes accompanying the denaturation of proteins, which are due to the difference in partial molal (specific) volume between the native and denatured proteins in solution.

2013 ◽  
Vol 781-784 ◽  
pp. 770-773
Author(s):  
Zhao Xi Fang ◽  
Nai Jun Yan ◽  
Guo Qin Liu

Far-UV circular dichroism (CD) spectroscopy was used to study the conformation of wheat gluten protein treatmented by dynamic high pressure microfluidization (DHPM), acid treatment and its comprehensive treatment in two solvents. The results showed, the secondary structure of control sample are mainly consist of α-helix and random-coil in phosphate-buffered saline (PBS) and phosphate buffered solution with SDS(SDS), the secondary structure of control sample are mainly consist of β-Sheet and random-coil. The CD data also showed that SDS interacts with the gluten protein and modifies the protein conformation, which switched the conformation from α-helix and β-Turn to β-sheet and random-coil. However, the CD analysis also indicated that some of the ordered structures of α-helix, β-Turn and β-sheet were destroyed and converted random-coil coped with acid in two solvents, in other words, the acid treatment can directed change the secondary structure. Furthermore, the effect of comprehensive treatment (DHPM plus acid) is not equal to the simple sum of the individual treatment effect.


1996 ◽  
Vol 317 (2) ◽  
pp. 549-555 ◽  
Author(s):  
Simon J. BIRVE ◽  
Eva SELSTAM ◽  
Lennart B.-Å. JOHANSSON

To study the secondary structure of the enzyme NADPH: protochlorophyllide oxidoreductase (PCOR), a novel method of enzyme isolation was developed. The detergent isotridecyl poly(ethylene glycol) ether (Genapol X-080) selectively solubilizes the enzyme from a prolamellar-body fraction isolated from wheat (Triticum aestivumL.). The solubilized fraction was further purified by ion-exchange chromatography. The isolated enzyme was studied by fluorescence spectroscopy at 77 K, and by CD spectroscopy. The fluorescence-emission spectra revealed that the binding properties of the substrate and co-substrate were preserved and that photo-reduction occurred. The CD spectra of PCOR were analysed for the relative amounts of the secondary structures, α-helix, β-sheet, turn and random coil. The secondary-structure composition was estimated to be 33% α-helix, 19% β-sheet, 20% turn and 28% random coil. These values are in agreement with those predicted by the Predict Heidelberg Deutschland and self-optimized prediction method from alignments methods. The enzyme has some amino acid identity with other NADPH-binding enzymes containing the Rossmann fold. The Rossmann-fold fingerprint motif is localized in the N-terminal region and at the expected positions in the predicted secondary structure. It is suggested that PCOR is anchored to the interfacial region of the membrane by either a β-sheet or an α-helical region containing tryptophan residues. A hydrophobic loop-region could also be involved in membrane anchoring.


2016 ◽  
Vol 7 (1) ◽  
pp. 153-163 ◽  
Author(s):  
Li-Yang Lin ◽  
Po-Chiao Huang ◽  
Deng-Jie Yang ◽  
Jhen-Yan Gao ◽  
Jin-Long Hong

AIE-related emission of polypeptide containing an AIE-active terminal is correlated with secondary structures (α-helix, β-sheet and random coil) of the peptide chains.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3273
Author(s):  
Runfang Wang ◽  
Suisui Jiang ◽  
Yujin Li ◽  
Yunsheng Xu ◽  
Tietao Zhang ◽  
...  

To expand the utilization of oyster protein (OP), the effects of high pressure (100 to 500 MPa) on chemical forces, structure, microstructure, and digestibility properties were investigated. High pressure (HP) treatment enhanced the electrostatic repulsion (from −13.3Control to −27.8HP200 mV) between protein molecules and avoided or retarded the formation of protein aggregates. In addition, the HP treated samples showed uniform distribution and small particle size. The changes in electrostatic interaction and particle size contributed to the improvement of solubility (from 10.53%Control to 19.92%HP500 at pH 7). The stretching and unfolding of protein were modified by HP treatment, and some internal hydrophobic groups and -SH groups were exposed. HP treatment modified the secondary structure of OP. The treated samples contained less α-helix and β-sheet structures, whereas the proportions of β-sheet and random coil structures were increased. The treated samples have high digestibility in the stomach (from 26.3%Control to 39.5%HP500) and in the total digestive process (from 62.1%Control to 83.7%HP500). In addition, the total digestive production showed higher percentages of small peptides (<1 kDa) after HP treatment. The protein solubility and digestibility were increased after HP treatment, and high solubility and high digestibility might increase the chance that OP become a kind of protein supplement.


2011 ◽  
Vol 236-238 ◽  
pp. 2221-2224
Author(s):  
Kui Hua Zhang ◽  
Xiu Mei Mo

In order to improve water-resistant ability silk fibroin (SF) and SF/P(LLA-CL) blended nanofibrous scaffolds for tissue engineering applications, methanol vapor were used to treat electrospun nanofibers. SEM indicated SF and SF/ P(LLA-CL) scaffolds maintained nanofibrous structure after treated with methanol vapor and possessed good water-resistant ability. Characterization of 13C NMR clarified methanol vapor induced SF conformation from random coil or α- helix to β-sheet. Moreover, treated SF/ P (LLA-CL) nanofibrous scaffolds still kept good mechanical properties. Methanol vapor could be ideal method to treat SF and SF/ P(LLA-CL) nanofibrous scaffolds for biomedical applications.


2005 ◽  
Vol 85 (4) ◽  
pp. 437-448 ◽  
Author(s):  
P. Yu ◽  
J. J. McKinnon ◽  
H. W. Soita ◽  
C. R. Christensen ◽  
D. A. Christensen

The objectives of the study were to use synchrotron Fourier transform infrared microspectroscopy (S-FTIR) as a novel approach to: (1) reveal ultra-structural chemical features of protein secondary structures of flaxseed tissues affected by variety (golden and brown) and heat processing (raw and roasted), and (2) quantify protein secondary structures using Gaussian and Lorentzian methods of multi-component peak modeling. By using multi-component peak modeling at protein amide I region of 1700–1620 cm-1, the results showed that the golden flaxseed contained relatively higher percentage of α-helix (47.1 vs. 36.9%), lower percentage of β-sheet (37.2 vs. 46.3%) and higher (P < 0.05) ratio of α-helix to β-sheet than the brown flaxseed (1.3 vs. 0.8). The roasting reduced (P < 0.05) percentage of α-helix (from 47.1 to 36.1%), increased percentage of β-sheet (from 37.2 to 49.8%) and reduced α-helix to β-sheet ratio (1.3 to 0.7) of the golden flaxseed tissues. However, the roasting did not affect percentage and ratio of α-helix and β-sheet in the brown flaxseed tissue. No significant differences were found in quantification of protein secondary structures between Gaussian and Lorentzian methods. These results demonstrate the potential of highly spatially resolved S-FTIR to localize relatively pure protein in the tissue and reveal protein secondary structures at a cellular level. The results indicated relative differences in protein secondary structures between flaxseed varieties and differences in sensitivities of protein secondary structure to the heat processing. Further study is needed to understand the relationship between protein secondary structure and protein digestion and utilization of flaxseed and to investigate whether the changes in the relative amounts of protein secondary structures are primarily responsible for differences in protein availability. Key words: Synchrotron, FTIR microspectrosopy, flaxseeds, intrinsic structural matrix, protein secondary structures, protein nutritive value


2021 ◽  
Vol 22 (22) ◽  
pp. 12509
Author(s):  
Joana Angélica Loureiro ◽  
Stéphanie Andrade ◽  
Lies Goderis ◽  
Ruben Gomez-Gutierrez ◽  
Claudio Soto ◽  
...  

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. An important hallmark of PD involves the pathological aggregation of proteins in structures known as Lewy bodies. The major component of these proteinaceous inclusions is alpha (α)-synuclein. In different conditions, α-synuclein can assume conformations rich in either α-helix or β-sheets. The mechanisms of α-synuclein misfolding, aggregation, and fibrillation remain unknown, but it is thought that β-sheet conformation of α-synuclein is responsible for its associated toxic mechanisms. To gain fundamental insights into the process of α-synuclein misfolding and aggregation, the secondary structure of this protein in the presence of charged and non-charged surfactant solutions was characterized. The selected surfactants were (anionic) sodium dodecyl sulphate (SDS), (cationic) cetyltrimethylammonium chloride (CTAC), and (uncharged) octyl β-D-glucopyranoside (OG). The effect of surfactants in α-synuclein misfolding was assessed by ultra-structural analyses, in vitro aggregation assays, and secondary structure analyses. The α-synuclein aggregation in the presence of negatively charged SDS suggests that SDS-monomer complexes stimulate the aggregation process. A reduction in the electrostatic repulsion between N- and C-terminal and in the hydrophobic interactions between the NAC (non-amyloid beta component) region and the C-terminal seems to be important to undergo aggregation. Fourier transform infrared spectroscopy (FTIR) measurements show that β-sheet structures comprise the assembly of the fibrils.


1996 ◽  
Vol 50 (1) ◽  
pp. 78-85 ◽  
Author(s):  
Artemy Voroshilov ◽  
Cees Otto ◽  
Jan Greve

The first application of polarization-sensitive multiplex coherent anti-Stokes Raman spectroscopy (MCARS) in the absence of resonance enhancement to the resolution of the secondary structure of a protein in solution is reported. Polarization MCARS spectra of bovine albumin in D2O were obtained in the range 1370 to 1730 cm−1 with the aid of the background suppression technique. The spectra were fitted simultaneously with a single set of parameters (band positions, bandwidths, amplitudes, and depolarization ratios). Polarized Raman spectra simulated with these parameters revealed a good correspondence with the spontaneous Raman spectra measured. The broad amide I′ band was decomposed assuming the three major secondary conformations of protein, of which the contribution of β-sheet structure was found to be negligible. Relative weights of α-helix and random coil conformations agree well with the estimates obtained with Raman and circular dichroism (CD) spectroscopies.


2006 ◽  
Vol 17 (02) ◽  
pp. 235-246 ◽  
Author(s):  
GÖKHAN GÖKOĞLU ◽  
TARIK ÇELİK

In order to provide insights into the misfolding mechanism and the subsequent aggregate formation which cause what are known as the neurodegenerative polyglutamine diseases, we have simulated a 10-residue polyglutamine (poly-Q) chain in vacuum and in solvent by multicanonical method, which enabled us to study the system in a wide temperature range and discuss thermodynamic properties. It is understood that the system in vacuum shows two phase transitions, first of them occur at high temperature that is the well-known helix-coil transition and the second one is a solid-solid transition. However, the poly-Q chain in solvent is in a random coil state at higher temperatures, goes through a conformational change at T = 200 K and assumes predominantly a mixture of anti-parallel β-sheet and α-helix structures at low temperatures. One-residue glutamine dipeptide is also simulated and low-energy stable conformations are identified.


Sign in / Sign up

Export Citation Format

Share Document