Wild Bird Populations in the Face of Disease

2021 ◽  
pp. 121-144
Author(s):  
Kathryn P. Huyvaert

Parasites and pathogens typically have detectable negative fitness impacts on individual avian hosts, but the role of parasites in driving population dynamics is less straightforward. Questions about whether and under what conditions parasites influence host population dynamics have been long-standing in infectious disease ecology for many years. Understanding the role of parasites in host population dynamics requires estimating statistical parameters such as infection prevalence and host abundance at population scales. Mathematical approaches such as process-based models are also often used to simulate population-level dynamics of host and parasite interactions over time. This chapter first describes tools commonly used in disease ecology to estimate these key parameters, with a focus on accounting for imperfect detection of individual animals or their disease or infection status and mark-recapture approaches. Some of the mathematical approaches, including SIR models, network approaches, and agent-based models, that are commonly used to simulate and predict the population dynamics of host–parasite interactions are presented. Through a series of case studies, the chapter finishes by considering whether and under what conditions parasites affect the overall growth of populations, whether parasites have a tendency to cause cycles or to regulate populations of wild birds, and some examples of parasite-induced local extinctions.

Parasitology ◽  
1985 ◽  
Vol 91 (2) ◽  
pp. 317-347 ◽  
Author(s):  
A. P. Dobson

A number of published studies of competition between parasite species are examined and compared. It is suggested that two general levels of interaction are discernible: these correspond to the two levels of competition recognized by workers studying free-living animals and plants: ‘exploitation’ and ‘interference’ competition. The former may be defined as the joint utilization of a host species by two or more parasite species, while the latter occurs when antagonistic mechanisms are utilized by one species either to reduce the survival or fecundity of a second species or to displace it from a preferred site of attachment. Data illustrating both levels of interaction are collated from a survey of the published literature and these suggest that interference competition invariably operates asymmetrically. The data are also used to estimate a number of population parameters which are important in determining the impact of competition at the population level. Theoretical models of host-parasite associations for both classes of competition are used to examine the expected patterns of population dynamics that will be exhibited by simple two-species communities of parasites that utilize the same host population. The analysis suggests that the most important factor allowing competing species of parasites to coexist is the statistical distribution of the parasites within the host population. A joint stable equilibrium should be possible if both species are aggregated in their distribution. The size of the parasite burdens at equilibrium is then determined by other life-history parameters such as pathogenicity, rates of resource utilization and antagonistic ability. Comparison of these theoretical expectations with a variety of sets of empirical data forms the basis for a discussion about the importance of competition in natural parasite populations. The models are used to assess quantitatively the potential for using competing parasite species as biological control agents for pathogens of economic or medical importance. The most important criterion for identifying a successful control agent is an ability to infect a high proportion of the host population. If such a parasite species also exhibits an intermediate level of pathology or an efficient ability to utilize shared common resources, antagonistic interactions between the parasite species contribute only secondarily to the success of the control. Competition in parasites is compared with competition in free-living animals and plants. The comparison suggests further experimental tests which may help to assess the importance of competition in determining the structure of more complex parasite-host communities.


2002 ◽  
Vol 66 (5) ◽  
pp. 627-652 ◽  
Author(s):  
M. F. Hochella

AbstractSustaining Earth, in the face of both technology thrusts and population dynamics, depends on our ability to maintain a delicate balance between human-promoted planetary modification and decline thresholds for land (soils), water, atmosphere, and biological systems. Mineralogy, as much as any other single science, will be central to this process. A set of links between Earth sustainability issues and the science of mineralogy are formulated and discussed in this discourse. The strongest ties exist in the areas of mineral-water and mineral-atmosphere interactions. Minerals are also particularly important in human disease generation. In addition, due to the role of minerals as invaluable economic resources, the environmental consequences of mining also come into play. New subdisciplines have recently emerged to bring mineralogy even closer to Earth sustainability issues, particularly mineral-microbe interaction science and nanomineralogy


2018 ◽  
Author(s):  
Maxwell B. Joseph ◽  
Roland A. Knapp

AbstractThe emergence of novel pathogens often has dramatic negative effects on previously unexposed host populations. Subsequent disease can drive populations and even species to extinction. After establishment in populations, pathogens can continue to affect host dynamics, influencing the success or failure of species recovery efforts. However, quantifying the effect of pathogens on host populations in the wild is challenging because individual hosts and their pathogens are difficult to observe. Here we use long-term mark-recapture data to describe the dynamics of reintroduced populations of an endangered amphibian (Rana sierrae) and evaluate the success of these recovery efforts in the presence of a recently-emerged pathogen, the amphibian chytrid fungus Batrachochytrium dendrobatidis. We find that high B. dendrobatidis infection intensities are associated with increases in detectability, reductions in survival, and more infected adults. We also find evidence for intensity-dependent survival, with heavily infected individuals suffering higher mortality. These results highlight the need in disease ecology for probabilistic approaches that account for uncertainty in infection intensity using imperfect observational data. Such approaches can advance the understanding of disease impacts on host population dynamics, and in the current study will improve the effectiveness of species conservation actions.


2021 ◽  
Author(s):  
Joseph R Mihaljevic ◽  
David J Páez

To make more informed predictions of host-pathogen interactions under climate change, studies have incorporated the thermal performance of host, vector, and pathogen traits into disease models. However, this body of work has ignored the fact that disease spread and long-term patterns of host population dynamics are largely determined by the variation in susceptibility among individuals in the host population. Furthermore, and especially for ectothermic host species, variation in susceptibility is likely to be plastic, influenced by variables such as environmental temperature. Quantifying the relationship between temperature and among-host trait variation will therefore be critical for predicting how climate change and disease will interact to influence host-pathogen population dynamics. Here, we demonstrate how short-term effects of temperature on the variation of host susceptibility drive epidemic characteristics, fluctuations in host population sizes, and probabilities of host extinction. We use this quantitative analysis as a basic framework to suggest that more research is needed in disease ecology to understand the mechanisms that shape trait variation, not just trait averages.


2017 ◽  
Vol 4 (3) ◽  
pp. 160914 ◽  
Author(s):  
Alberto Aleta ◽  
Andreia N. S. Hisi ◽  
Sandro Meloni ◽  
Chiara Poletto ◽  
Vittoria Colizza ◽  
...  

Rapidly mutating pathogens may be able to persist in the population and reach an endemic equilibrium by escaping hosts’ acquired immunity. For such diseases, multiple biological, environmental and population-level mechanisms determine the dynamics of the outbreak, including pathogen's epidemiological traits (e.g. transmissibility, infectious period and duration of immunity), seasonality, interaction with other circulating strains and hosts’ mixing and spatial fragmentation. Here, we study a susceptible-infected-recovered-susceptible model on a metapopulation where individuals are distributed in sub-populations connected via a network of mobility flows. Through extensive numerical simulations, we explore the phase space of pathogen's persistence and map the dynamical regimes of the pathogen following emergence. Our results show that spatial fragmentation and mobility play a key role in the persistence of the disease whose maximum is reached at intermediate mobility values. We describe the occurrence of different phenomena including local extinction and emergence of epidemic waves, and assess the conditions for large-scale spreading. Findings are highlighted in reference to previous studies and to real scenarios. Our work uncovers the crucial role of hosts’ mobility on the ecological dynamics of rapidly mutating pathogens, opening the path for further studies on disease ecology in the presence of a complex and heterogeneous environment.


Author(s):  
Wesley M. Hochachka ◽  
Andrew P. Dobson ◽  
Dana M. Hawley ◽  
André A. Dhondt

2020 ◽  
Vol 99 (4) ◽  
pp. 379-383
Author(s):  
Vasily N. Afonyushkin ◽  
N. A. Donchenko ◽  
Ju. N. Kozlova ◽  
N. A. Davidova ◽  
V. Yu. Koptev ◽  
...  

Pseudomonas aeruginosa is a widely represented species of bacteria possessing of a pathogenic potential. This infectious agent is causing wound infections, fibrotic cystitis, fibrosing pneumonia, bacterial sepsis, etc. The microorganism is highly resistant to antiseptics, disinfectants, immune system responses of the body. The responses of a quorum sense of this kind of bacteria ensure the inclusion of many pathogenicity factors. The analysis of the scientific literature made it possible to formulate four questions concerning the role of biofilms for the adaptation of P. aeruginosa to adverse environmental factors: Is another person appears to be predominantly of a source an etiological agent or the source of P. aeruginosa infection in the environment? Does the formation of biofilms influence on the antibiotic resistance? How the antagonistic activity of microorganisms is realized in biofilm form? What is the main function of biofilms in the functioning of bacteria? A hypothesis has been put forward the effect of biofilms on the increase of antibiotic resistance of bacteria and, in particular, P. aeruginosa to be secondary in charcter. It is more likely a biofilmboth to fulfill the function of storing nutrients and provide topical competition in the face of food scarcity. In connection with the incompatibility of the molecular radii of most antibiotics and pores in biofilm, biofilm is doubtful to be capable of performing a barrier function for protecting against antibiotics. However, with respect to antibodies and immunocompetent cells, the barrier function is beyond doubt. The biofilm is more likely to fulfill the function of storing nutrients and providing topical competition in conditions of scarcity of food resources.


Author(s):  
Ronald Hoinski ◽  
Ronald Polansky

David Hoinski and Ronald Polansky’s “The Modern Aristotle: Michael Polanyi’s Search for Truth against Nihilism” shows how the general tendencies of contemporary philosophy of science disclose a return to the Aristotelian emphasis on both the formation of dispositions to know and the role of the mind in theoretical science. Focusing on a comparison of Michael Polanyi and Aristotle, Hoinski and Polansky investigate to what degree Aristotelian thought retains its purchase on reality in the face of the changes wrought by modern science. Polanyi’s approach relies on several Aristotelian assumptions, including the naturalness of the human desire to know, the institutional and personal basis for the accumulation of knowledge, and the endorsement of realism against objectivism. Hoinski and Polansky emphasize the promise of Polanyi’s neo-Aristotelian framework, which argues that science is won through reflection on reality.


Sign in / Sign up

Export Citation Format

Share Document