Why are there species?

Author(s):  
Timothy G. Barraclough

This chapter continues the discussion of evolutionary methods of species delimitation by exploring how multilocus methods can be used to delimit reproductively isolated groups, and how genetic and trait data can be used in concert to delimit groups that experience divergent selection. These methods provide a way to evaluate the different mechanisms leading to cohesion within species and divergence between them. Multilocus data are scarcer at present than single-locus data discussed in chapter 3, and more work is needed to test alternative hypotheses for the pattern of reproductive isolation—does it generally fall into discrete units or are there broader or gradually declining rates of gene exchange? Divergent selection is less commonly used as a metric for delimiting species, and possible new methods are introduced. Possible uses of whole-genome data are discussed for combining these approaches and testing whether reproductive isolation and divergent selection tend to overlap to generate species or whether more complex models of diversity are required.

Author(s):  
Timothy G. Barraclough

This chapter discusses how to detect evolutionary species, and how to test whether species are real and to evaluate the alternative hypotheses for the structure of diversity described in chapter 2. After outlining evidence from phenotypic data, such as surveys of morphology, it describes population genetic methods for delimiting species from single-locus genetic data, of the kind gathered by DNA barcoding and taxonomy initiatives. All forms of life display the same pattern of discrete clustering of genetic variation that is indicative of the existence of independently evolving groups, that is, species. This is perhaps the best comprehensive evidence we have for the reality of species, but it leaves open many further questions about the causes of that pattern, and does not rule out more complex models for the structure of diversity.


2014 ◽  
Author(s):  
Laurent A.F. Frantz ◽  
Joshua Schraiber ◽  
Ole Madsen ◽  
Hendrik-Jan Megens ◽  
Alex Cagan ◽  
...  

Traditionally, the process of domestication is assumed to be initiated by people, involve few individuals and rely on reproductive isolation between wild and domestic forms. However, an emerging zooarcheological consensus depicts animal domestication as a long-term process without reproductive isolation or strong intentional selection. Here, we ask whether pig domestication followed a traditional linear model, or a complex, reticulate model as predicted by zooarcheologists. To do so, we fit models of domestication to whole genome data from over 100 wild and domestic pigs. We found that the assumptions of traditional models, such as reproductive isolation and strong domestication bottlenecks, are incompatible with the genetic data and provide support for the zooarcheological theory of a complex domestication process. In particular, gene-flow from wild to domestic pigs was a ubiquitous feature of the domestication of pigs. In addition, we show that despite gene-flow, the genomes of domestic pigs show strong signatures of selection at loci that affect behaviour and morphology. Specifically, our results are consistent with independent parallel sweeps in two independent domestication areas (China and Anatolia) at loci linked to morphological traits. We argue that recurrent selection for domestic traits likely counteracted the homogenising effect of gene-flow from wild boars and created "islands of domestication" in the genome. Overall, our results suggest that genomic approaches that allow for more complex models of domestication to be embraced should be employed. The results from these studies will have significant ramifications for studies that attempt to infer the origin of domesticated animals.


2009 ◽  
Vol 39 (8) ◽  
pp. 1231-1235 ◽  
Author(s):  
R. Keers ◽  
A. E. Farmer ◽  
K. J. Aitchison

There is significant unmet need for more effective treatments for bipolar disorder. The drug discovery process is becoming prohibitively expensive. Hence, biomarker clues to assist or shortcut this process are now widely sought. Using the publicly available data from the whole genome association study conducted by the Wellcome Trust Case Control Consortium, we sought to identify groups of genetic markers (single nucleotide polymorphisms) in which each marker was independently associated with bipolar disorder, with a less stringent threshold than that set by the original investigators (p⩽1×10−4). We identified a group of markers occurring within the CACNA1C gene (encoding the alpha subunit of the calcium channel Cav1.2). We then ascertained that this locus had been previously associated with the disorder in both a smaller and a whole genome study, and that a number of drugs blocking this channel (including verapamil and diltiazem) had been trialled in the treatment of bipolar disorder. The dihydropyridine-based blockers such as nimodipine that bind specifically to Cav1.2 and are more penetrant to the central nervous system have shown some promising early results; however, further trials are indicated. In addition, migraine is commonly seen in affective disorder, and calcium channel antagonists are successfully used in the treatment of migraine. One such agent, flunarizine, is structurally related to other first-generation derivatives of antihistamines such as antipsychotics. This implies that flunarizine could be useful in the treatment of bipolar disorder, and, furthermore, that other currently licensed drugs should be investigated for antagonism of Cav1.2.


2021 ◽  
Vol 111 (1) ◽  
pp. 8-11
Author(s):  
Remco Stam ◽  
Pierre Gladieux ◽  
Boris A. Vinatzer ◽  
Erica M. Goss ◽  
Neha Potnis ◽  
...  

Population genetics has been a key discipline in phytopathology for many years. The recent rise in cost-effective, high-throughput DNA sequencing technologies, allows sequencing of dozens, if not hundreds of specimens, turning population genetics into population genomics and opening up new, exciting opportunities as described in this Focus Issue . Without the limitations of genetic markers and the availability of whole or near whole-genome data, population genomics can give new insights into the biology, evolution and adaptation, and dissemination patterns of plant-associated microbes.


2021 ◽  
Author(s):  
◽  
Sergio Diaz Martinez

<p>Understanding speciation is one of the great challenges in evolutionary biology as many of the processes involved in speciation, as well as the forces leading to morphological and genetic differentiation, are not fully understood. Three main modes of speciation have been described: allopatric, parapatric and sympatric. Sympatric speciation is the most enigmatic mode because in the absence of physical barriers, disruptive selection, assortative mating and hybridization play central roles in reproductive isolation. Although it is accepted that sympatric speciation is possible, only a few examples of this process exist to date. Another common method of speciation in plants and algae is via polyploidization. Recently, a promising system to study speciation in sympatry was discovered: the endemic Cladophorales species flock in ancient Lake Baikal, Russia. The flock consists of sixteen taxa grouped in four genera: Chaetocladiella, Chaetomorpha, Cladophora and Gemmiphora. In spite of their morphological diversity, recent molecular analyses have shown that this is a monophyletic group with low genetic variation and nested within the morphologically simple genus Rhizoclonium. Due to their high number of species, endemism and sympatric distribution, many interesting questions have arisen such as what processes are involved in speciation, and whether this group might be a novel example of sympatric speciation. In this study, we analysed the population genetics of the endemic Baikalian Cladophorales to infer the processes shaping the evolution of the group. First, a set of microsatellites was designed using high-throughput sequencing data. Second, species delimitation methods based on genetic clustering were performed. Third, the population genetics of three widely distributed species was analysed looking for evidence of panmixia, a common criteria to support sympatric speciation. A total of 11 microsatellites that mostly cross-amplify between most species were obtained. The genotyping revealed that most loci had more than two alleles per individual indicating polyploidy. As such, the analyses required a different approach which consisted in coding the genotypes as ‘allelic phenotypes’, allowing the use of individuals of different ploidy levels in the same data set. The species delimitation of 15 operative morphotaxa and 727 individuals supported reproductive isolation of five morphotaxa and two hypotheses of conspecificity. However, some morphotaxa showed unclear assignments revealing the need of further research to clarify their reproductive limits. Finally, the population genetics of Chaetomorpha moniliformis, Cladophora compacta and Cl. kursanovii revealed patterns of genetic variation and structure that suggest different reproductive strategies and dispersal abilities. This demonstrates that contrasting biological characteristics may arise in closely related lineages: Chaetomorpha moniliformis with dominant asexual reproduction and long dispersal abilities; Cladophora compacta with high genetic diversity, no population structure and likely to reproduce sexually; Cl. kursanovii with a structure congruent with geographic distribution and more restricted dispersal. The results suggest that polyploidy, rather than speciation with gene flow, is the force driving the reproductive isolation and evolution of this flock. Although many questions remain to be studied, this research provides the first insights into the diversification of this Cladophorales species flock and contributes to the understanding of speciation in freshwater algae.</p>


2021 ◽  
Author(s):  
Helgi Hilmarsson ◽  
Arvind S. Kumar ◽  
Richa Rastogi ◽  
Carlos D. Bustamante ◽  
Daniel Mas Montserrat ◽  
...  

ABSTRACTAs genome-wide association studies and genetic risk prediction models are extended to globally diverse and admixed cohorts, ancestry deconvolution has become an increasingly important tool. Also known as local ancestry inference (LAI), this technique identifies the ancestry of each region of an individual’s genome, thus permitting downstream analyses to account for genetic effects that vary between ancestries. Since existing LAI methods were developed before the rise of massive, whole genome biobanks, they are computationally burdened by these large next generation datasets. Current LAI algorithms also fail to harness the potential of whole genome sequences, falling well short of the accuracy that such high variant densities can enable. Here we introduce Gnomix, a set of algorithms that address each of these points, achieving higher accuracy and swifter computational performance than any existing LAI method, while also enabling portable models that are particularly useful when training data are not shareable due to privacy or other restrictions. We demonstrate Gnomix (and its swift phase correction counterpart Gnofix) on worldwide whole-genome data from both humans and canids and utilize its high resolution accuracy to identify the location of ancient New World haplotypes in the Xoloitzcuintle, dating back over 100 generations. Code is available at https://github.com/AI-sandbox/gnomix.


Sign in / Sign up

Export Citation Format

Share Document