Population fragmentation causes inadequate gene flow and increases extinction risk

Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Most species now have fragmented distributions, often with adverse genetic consequences. The genetic impacts of population fragmentation depend critically upon gene flow among fragments and their effective sizes. Fragmentation with cessation of gene flow is highly harmful in the long term, leading to greater inbreeding, increased loss of genetic diversity, decreased likelihood of evolutionary adaptation and elevated extinction risk, when compared to a single population of the same total size. The consequences of fragmentation with limited gene flow typically lie between those for a large population with random mating and isolated population fragments with no gene flow.

Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Most species now have fragmented distributions, often with adverse genetic consequences. The genetic impacts of population fragmentation depend critically upon gene flow among fragments and their effective sizes. Fragmentation with cessation of gene flow is highly harmful in the long term, leading to greater inbreeding, increased loss of genetic diversity, decreased likelihood of evolutionary adaptation and elevated extinction risk, when compared to a single population of the same total size. The consequences of fragmentation with limited gene flow typically lie between those for a large population with random mating and isolated population fragments with no gene flow.


2015 ◽  
Vol 63 (4) ◽  
pp. 279 ◽  
Author(s):  
Josef Krawiec ◽  
Siegfried L. Krauss ◽  
Robert A. Davis ◽  
Peter B. S. Spencer

Populations in fragmented urban remnants may be at risk of genetic erosion as a result of reduced gene flow and elevated levels of inbreeding. This may have serious genetic implications for the long-term viability of remnant populations, in addition to the more immediate pressures caused by urbanisation. The population genetic structure of the generalist skink Ctenotus fallens was examined using nine microsatellite markers within and among natural vegetation remnants within a highly fragmented urban matrix in the Perth metropolitan area in Western Australia. These data were compared with samples from a large unfragmented site on the edge of the urban area. Overall, estimates of genetic diversity and inbreeding within all populations were similar and low. Weak genetic differentiation, and a significant association between geographic and genetic distance, suggests historically strong genetic connectivity that decreases with geographic distance. Due to recent fragmentation, and genetic inertia associated with low genetic diversity and large population sizes, it is not possible from these data to infer current genetic connectivity levels. However, the historically high levels of gene flow that our data suggest indicate that a reduction in contemporary connectivity due to fragmentation in C. fallens is likely to result in negative genetic consequences in the longer term.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark Eldridge ◽  
Michele R. Dudash ◽  
...  

The biological diversity of the planet is being rapidly depleted due to the direct and indirect consequences of human activity. As the size of animal and plant populations decrease and fragmentation increases, loss of genetic diversity reduces their ability to adapt to changes in the environment, with inbreeding and reduced fitness inevitable consequences for many species. Many small isolated populations are going extinct unnecessarily. In many cases, such populations can be genetically rescued by gene flow into them from another population within the species, but this is very rarely done. This novel and authoritative book addresses the issues involved in genetic management of fragmented animal and plant populations, including inbreeding depression, loss of genetic diversity and elevated extinction risk in small isolated populations, augmentation of gene flow, genetic rescue, causes of outbreeding depression and predicting its occurrence, desirability and implementation of genetic translocations to cope with climate change, and defining and diagnosing species for conservation purposes.


1999 ◽  
Vol 47 (4) ◽  
pp. 213-224 ◽  
Author(s):  
Li Huang ◽  
Eitan Millet ◽  
Junkang Rong ◽  
Jonathan F. Wendel ◽  
Yehoshua Anikster ◽  
...  

RFLP diversity in the nuclear genome was estimated within and among Israeli populations of wild emmer wheat (Triticum turgidumvar.dicoccoides) from a long-term study site at Ammiad (NE Israel), and from several other geographical locations. Using 55 enzyme-probe combinations, high levels of genetic diversity were revealed in wild emmer in general and within the Ammiad site. In spite of high diversity, observed heterozygosity was low and populations consisted of a patchwork of alternate multilocus homozygotes, consistent with the reproductive biology of a predominant self-fertilizing species. Retention of genetic diversity in wild emmer may be promoted by large population sizes, microhabitat diversity, and occasional gene flow through both pollen and seed. Population genetic structure in wild emmer appears to have been influenced by historical founder events as well as selective factors. Multivariate analyses indicated that individuals tend to cluster together according to their population of origin, and that there is little geographical differentiation among populations. Sampling of 12 domesticated land-races and both primitive and modern cultivars ofT. turgidumrevealed high levels of diversity and a large number of alleles that were not detected in the wild emmer populations. This may reflect a long-term domestication process in which wild, semi-domesticated, and domesticated types grew sympatrically, continuing introgression from wild populations, and perhaps also gene flow from trans-specific sources.


2014 ◽  
Vol 71 (7) ◽  
pp. 1619-1628 ◽  
Author(s):  
Fausto Valenzuela-Quiñonez ◽  
John Carlos Garza ◽  
Juan A. De-Anda-Montañez ◽  
Francisco J. García-de-León

Several worldwide marine fish stocks need to recover from collapse or overexploitation. However, the effects of a fishery collapse at the genetic level are still largely unknown, as is the extent of reduction in genetic diversity caused by fisheries and the consequences for extinction risk. Here we present a case study of totoaba, the first marine fish considered as critically endangered. We assessed 16 microsatellite loci to determine whether the demographic collapse of the species resulted in a loss of genetic diversity. Our data indicate that genetic diversity of totoaba is in the range of values observed for fish with similar biological traits without a documented fishery collapse. Contemporary demographic analysis indicated no loss of genetic diversity. Long-term genealogical analysis showed a substantial reduction in effective population size. However, the time and causal effects for population decline cannot be inferred because of the large uncertainty in estimates. Our results indicate that the totoaba in the Gulf of California has not suffered a measurable contemporary reduction in genetic diversity, and that genetic diversity is driven by long-term climatic events. Estimates of current effective size indicate that it is large enough that genetic factors may not be a major problem for conservation. We conclude that the recent fishery collapse of totoaba did not have sufficient consequences at the genetic level to increase the risk of extinction from genetic drift. However, selective effects of fishing on the adaptive potential in totoaba remain unclear.


2020 ◽  
Author(s):  
Sara Lampi ◽  
Jonas Donner ◽  
Heidi Anderson ◽  
Jaakko L. O. Pohjoismäki

Abstract Background Discrete breed ideals are not restricted to delimiting dog breeds from another, but also are key drivers of subpopulation differentiation. As genetic differentiation due to population fragmentation results in increased rates of inbreeding and loss of genetic diversity, detecting and alleviating the reasons of population fragmentation can provide effective tools for the maintenance of healthy dog breeds. Results Using a genome wide SNP array, we detected genetic differentiation to subpopulations in six breeds, Belgian Shepherd, English Greyhound, Finnish Lapphund, Italian Greyhound, Labrador Retriever and Shetland Sheepdog, either due to geographical isolation or as a result of differential breeding strategies. The subpopulation differentiation was strongest in show dog lineages. Conclusions Besides geographical differentiation caused by founder effect and lack of gene flow, selection on champion looks or restricted pedigrees is a strong driver of population fragmentation. Artificial barriers for gene flow between the different subpopulations should be recognized and abolished for the maintenance of genetic diversity within a breed.


2020 ◽  
Author(s):  
Sara Lampi ◽  
Jonas Donner ◽  
Heidi Anderson ◽  
Jaakko L. O. Pohjoismäki

Abstract Background: Discrete breed ideals are not restricted to delimiting dog breeds from another, but also are key drivers of subpopulation differentiation. As genetic differentiation due to population fragmentation results in increased rates of inbreeding and loss of genetic diversity, detecting and alleviating the reasons of population fragmentation can provide effective tools for the maintenance of healthy dog breeds. Results: Using a genome wide SNP array, we detected genetic differentiation to subpopulations in six breeds, Belgian Shepherd, English Greyhound, Finnish Lapphund, Italian Greyhound, Labrador Retriever and Shetland Sheepdog, either due to geographical isolation or as a result of differential breeding strategies. The subpopulation differentiation was strongest in show dog lineages.Conclusions: Besides geographical differentiation caused by founder effect and lack of gene flow, selection on champion looks or restricted pedigrees is a strong driver of population fragmentation. Artificial barriers for gene flow between the different subpopulations should be recognized, their necessity evaluated critically and perhaps abolished in order to maintain genetic diversity within a breed. Subpopulation differentiation might also result in false positive signals in genome-wide association studies of different traits.Lay summary: Purebred dogs are, by definition, reproductively isolated from other breeds. However, similar isolation can also occur within a breed due to conflicting breeder ideals and geographic distances between the dog populations. We show here that both of these examples can contribute to breed division, with subsequent loss of genetic variation in the resulting breed lineages. Breeders should avoid creating unnecessary boundaries between breed lineages and facilitate the exchange of dogs between countries.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations is one of the major, largely unaddressed issues in biodiversity conservation. Many species across the planet have fragmented distributions with small isolated populations that are potentially suffering from inbreeding and loss of genetic diversity (genetic erosion), leading to elevated extinction risk. Fortunately, genetic deterioration can usually be remedied by gene flow from another population (crossing between populations within species), yet this is rarely done, in part because of fears that crossing may be harmful (but we can predict when this will occur). We address management of gene flow between previously isolated populations and genetic management under global climate change.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations is one of the major, largely unaddressed issues in biodiversity conservation. Many species across the planet have fragmented distributions with small isolated populations that are potentially suffering from inbreeding and loss of genetic diversity (genetic erosion), leading to elevated extinction risk. Fortunately, genetic deterioration can usually be remedied by augmenting gene flow (crossing between populations within species), yet this is rarely done, in part because of fears that crossing may be harmful (but it is possible to predict when this will occur). Benefits and risks of genetic problems are sometimes altered in species with diverse mating systems and modes of inheritance. Adequate genetic management depends on appropriate delineation of species. We address management of gene flow between previously isolated populations and genetic management under global climate change.


2005 ◽  
Vol 75 (4) ◽  
pp. 25-35 ◽  
Author(s):  
M. Jasieniuk ◽  
B.D. Maxwell

Numerous factors, including mutation, selection, inheritance, mating System, and gene flow are important in the evolution of herbicide resistance in weeds. Spontaneous gene mutation is believed to be the main source of genetic variation for resistance evolution in a geographic region in which resistance has not been detected previously. Despite mutation frequencies that are probably very low, the probability of occurrence of at least a single resistant mutant in a susceptible population may be high for weed species with high fecundities and large population sizes. Subsequent repeated treatments with herbicides having the same mode of action could lead to the rapid evolution of predominantly resistant populations. Rare dominantly inherited resistance mutations spread significantly more rapidly than recessive mutations in random mating populations, but at roughly the same rate in highly self-fertilizing species. Gene flow, through the movement of pollen or seed from resistant weed populations, may provide a source of resistance alleles to adjacent or nearby susceptible fields. Mathematical models indicate that the strength of selection imposed by a herbicide and the initial frequency of the resistant phenotype most strongly influence the rate of resistance evolution. The models predict that the most effective strategies to manage resistance are to reduce the intensity of selection by herbicide and to limit the migration of herbicide-resistant seed.


Sign in / Sign up

Export Citation Format

Share Document