The physics of black holes I

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter describes two physical processes related to the Schwarzschild and Kerr solutions which can be induced by the gravitational field of a black hole. The first is the Penrose process, which suggests that rotating black holes are large energy reservoirs. Next is superradiance, which is the first step in the study of black-hole stability. The study of the stability of black holes involves the linearization of the Einstein equations about the Schwarzschild or Kerr solution. As this chapter shows, the equations of motion for perturbations of the metric are wave equations. The problem then is to determine whether or not these solutions are bounded.

2020 ◽  
Vol 135 (11) ◽  
Author(s):  
Christian Dioguardi ◽  
Massimiliano Rinaldi

AbstractBlack holes in f(R)-gravity are known to be unstable, especially the rotating ones. In particular, an instability develops that looks like the classical black hole bomb mechanism: the linearized modified Einstein equations are characterized by an effective mass that acts like a massive scalar perturbation on the Kerr solution in general relativity, which is known to yield instabilities. In this note, we consider a special class of f(R) gravity that has the property of being scale-invariant. As a prototype, we consider the simplest case $$f(R)=R^2$$ f ( R ) = R 2 and show that, in opposition to the general case, static and stationary black holes are stable, at least at the linear level. Finally, the result is generalized to a wider class of f(R) theories.


Author(s):  
Jérémie Szeftel ◽  
Sergiu Klainerman

One of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. This book takes an important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes — or Schwarzschild spacetimes — under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, the book introduces a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, the book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture.


2019 ◽  
Vol 28 (13) ◽  
pp. 1941003 ◽  
Author(s):  
Alexander F. Zakharov

An active stage of relativistic astrophysics started in 1963 since in this year, quasars were discovered, Kerr solution had been found and the first Texas Symposium on Relativistic Astrophysics was organized in Dallas. Five years later, in 1967–1968 pulsars were discovered and their model as rotating neutron stars (NSs) had been proposed, meanwhile Wheeler claimed that Kerr and Schwarzschild vacuum solutions of Einstein equations provide an efficient approach for astronomical objects with different masses. Wheeler suggested to call these objects black holes. NSs were observed in different spectral band of electromagnetic radiation. In addition, a neutrino signal had been found for SN1987A. Therefore, multi-messenger astronomy demonstrated its efficiency for decades even before observations of the first gravitational radiation sources. However, usually, one has only manifestations of black holes in a weak gravitational field limit and sometimes a model with a black hole could be substituted with an alternative approach which very often looks much less natural, however, it is necessary to find observational evidences to reject such an alternative model. At the moment, only few astronomical signatures for strong gravitational field are found, including a shape of relativistic iron [Formula: see text] line, size and shape of shadows near black holes at the Galactic Center (GC) and M87, trajectories of bright stars near the GC. After two observational runs, the LIGO–Virgo collaboration provided a confirmation for a presence of mergers for 10 binary black holes and one binary NS system where gravitational wave signals were found. In addition, in the last years, a remarkable progress has been reached in a development of observational facilities to investigate a gravitational potential, for instance, the number of telescopes operating in the Event Horizon Telescope network is increasing and accuracy of a shadow reconstruction near the GC is improving, meanwhile largest VLT, Keck telescopes with adaptive optics and especially GRAVITY facilities observe bright IR stars at the GC with perfect accuracy. More options for precision observations of bright stars will be available with creating extremely large telescopes Thirty Meter Telescope (TMT) and E-ELT. It is clear that the GC (Sgr [Formula: see text]) is a specific object for observations. Our solar system is located at a distance around 8 kpc from the GC. Earlier, theorists proposed a number of different models including exotic ones for GC such as boson star, fermion ball, neutrino ball, a cluster of NSs. Later, some of these models were ruled out or essentially constrained with consequent observations and theoretical considerations. Currently, a supermassive black hole with mass around [Formula: see text] is the most natural model for GC. Using results of observations for trajectories of bright stars in paper [A. F. Zakharov, P. Jovanović, D. Borka and V. B. Jovanović, J. Cosmol. Astropart. Phys. 05 (2016) 045] the authors got a graviton mass constraint which is comparable and consistent with constraints obtained recently by the LIGO–Virgo collaboration. Later, we consider opportunities to improve current graviton mass constraints with future observations of bright stars [A. F. Zakharov, P. Jovanović, D. Borka and V. B. Jovanović, J. Cosmol. Astropart. Phys. 04 (2018) 050]. Similarly, from an analysis of bright star trajectories, one could constrain a tidal charge which was predicted by a gravity theory with an additional dimension [A. F. Zakharov, Eur. Phys. J. C 78 (2018) 689].


2016 ◽  
Vol 12 (S324) ◽  
pp. 273-278
Author(s):  
Robert Lasenby

AbstractBosonic fields around a spinning black hole can be amplified via ‘superradiance’, a wave analogue of the Penrose process, which extracts energy and momentum from the black hole. For hypothetical ultra-light bosons, with Compton wavelengths on ≳ km scales, such a process can lead to the exponential growth of gravitationally bound states around astrophysical Kerr black holes. If such particles exist, as predicted in many theories of beyond Standard Model physics, then these bosonic clouds give rise to a number of potentially-observable signals. Among the most promising are monochromatic gravitational radiation signals which could be detected at Advanced LIGO and future gravitational wave observatories.


2020 ◽  
pp. 312-336
Author(s):  
Piotr T. Chruściel

In this chapter we review what is known about dynamical black hole-solutions of Einstein equations. We discuss the Robinson–Trautman black holes, with or without a cosmological constant. We review the Cauchy-data approach to the construction of black-hole spacetimes. We propose some alternative approaches to a meaningful definition of black hole in a dynamical spacetime, and we review the nonlinear stability results for black-hole solutions of vacuum Einstein equations.


2020 ◽  
Vol 496 (1) ◽  
pp. 245-268 ◽  
Author(s):  
S F Zhu (朱世甫) ◽  
W N Brandt ◽  
B Luo (罗斌) ◽  
Jianfeng Wu (武剑锋) ◽  
Y Q Xue (薛永泉) ◽  
...  

ABSTRACT Radio-loud quasars (RLQs) are more X-ray luminous than predicted by the X-ray–optical/UV relation (i.e. $L_\mathrm{x}\propto L_\mathrm{uv}^\gamma$) for radio-quiet quasars (RQQs). The excess X-ray emission depends on the radio-loudness parameter (R) and radio spectral slope (αr). We construct a uniform sample of 729 optically selected RLQs with high fractions of X-ray detections and αr measurements. We find that steep-spectrum radio quasars (SSRQs; αr ≤ −0.5) follow a quantitatively similar $L_\mathrm{x}\propto L_\mathrm{uv}^{\gamma }$ relation as that for RQQs, suggesting a common coronal origin for the X-ray emission of both SSRQs and RQQs. However, the corresponding intercept of SSRQs is larger than that for RQQs and increases with R, suggesting a connection between the radio jets and the configuration of the accretion flow. Flat-spectrum radio quasars (FSRQs; αr > −0.5) are generally more X-ray luminous than SSRQs at given Luv and R, likely involving more physical processes. The emergent picture is different from that commonly assumed where the excess X-ray emission of RLQs is attributed to the jets. We thus perform model selection to compare critically these different interpretations, which prefers the coronal scenario with a corona–jet connection. A distinct jet component is likely important for only a small portion of FSRQs. The corona–jet, disc–corona, and disc–jet connections of RLQs are likely driven by independent physical processes. Furthermore, the corona–jet connection implies that small-scale processes in the vicinity of supermassive black holes, probably associated with the magnetic flux/topology instead of black hole spin, are controlling the radio-loudness of quasars.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 99 ◽  
Author(s):  
Christian Fendt

Black holes represent extreme conditions of physical laws. Predicted about a century ago, they are now accepted as astrophysical reality by most of the scientific community. Only recently has more direct evidence of their existence been found—the detection of gravitational waves from black hole mergers and of the shadow of a supermassive black hole in the center of a galaxy. Astrophysical black holes are typically embedded in an active environment which is affected by the strong gravity. When the environmental material emits radiation, this radiation may carry imprints of the black hole that is hosting the radiation source. In order to understand the physical processes that take place in the close neighborhood of astrophysical black holes, numerical methods and simulations play an essential role. This is simply because the dynamical evolution and the radiative interaction are far too complex in order to allow for an analytic solution of the physical equations. A huge progress has been made over the last decade(s) in the numerical code development, as well as in the computer power that is needed to run these codes. This review tries to summarize the basic questions and methods that are involved in the undertaking of investigating the astrophysics of black holes by numerical means. It is intended for a non-expert audience interested in an overview over this broad field. The review comes along without equations and thus without a detailed expert discussion of the underlying physical processes or numerical specifics. Instead, it intends to illustrate the richness of the field and to motivate further reading. The review puts some emphasis on magneto-hydrodynamic simulations but also touches radiation transfer and merger simulations, in particular pointing out differences in these approaches.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450144 ◽  
Author(s):  
Yu Zhang ◽  
Jin-Ling Geng ◽  
En-Kun Li

In this paper, we study the orbital dynamics of the gravitational field of stringy black holes by analyzing the effective potential and the phase plane diagram. By solving the equation of Lagrangian, the general relativistic equations of motion in the gravitational field of stringy black holes are given. It is easy to find that the motion of test particles depends on the energy and angular momentum of the test particles. Using the phase plane analysis method and combining the conditions of the stability, we discuss different types of the test particles' orbits in the gravitational field of stringy black holes. We get the innermost stable circular orbit which occurs at r min = 5.47422 and when the angular momentum b ≤ 4.3887 the test particles will fall into the black hole.


2019 ◽  
Vol 28 (16) ◽  
pp. 2040012
Author(s):  
Rehana Rahim ◽  
Khalid Saifullah

We analyze the charged Johannsen–Psaltis black hole for energy extraction via the Penrose process. Efficiency of the Penrose process is found to be dependent on the deformation parameter of the metric and charge. Doing the calculations numerically, we find that, in the nonextremal limit, presence of charge leads to lesser efficiency than the Kerr. In the extremal cases with negative deformation parameter, charge leads to a very high efficiency, higher than that of the Kerr and Johannsen–Psaltis black holes.


2018 ◽  
Vol 15 (02) ◽  
pp. 1850018 ◽  
Author(s):  
Piero Nicolini ◽  
Anais Smailagic ◽  
Euro Spallucci

Recently, it has been claimed by Chinaglia and Zerbini that the curvature singularity is present even in the so-called regular black hole solutions of the Einstein equations. In this brief note, we show that this criticism is devoid of any physical content.


Sign in / Sign up

Export Citation Format

Share Document