Exploiting symbiotic interactions for vector/disease control

Author(s):  
Patrick Mavingui ◽  
Claire Valiente Mor ◽  
Pablo Tortosa

Arthropods transmit a variety of diseases to humans and animals, including arboviruses, bacteria and parasites. No efficient treatments or control methods are available for many vector-borne diseases, especially for emerging diseases. Therefore, the development of alternative strategies aiming at controlling disease transmission is encouraged worldwide. Although transmission phenomenon is a result of complex interactions involving several actors evolving in a changing environment, the biotic relationship between pathogens and their vectors represents a key step in successful disease transmission. Recent studies highlighted a strong impact of microbiomes on the life-history traits of arthropod hosts. This chapter emphasizes those biotic interactions having an impact on adaptive traits influencing disease transmission. Evidence in behavioral alterations of vector populations/individuals with relevance to vector-pathogen transmission mitigation is reviewed. Opportunities to take advantage of such biotic processes in the control of vector-borne diseases in different epidemiological, entomological and environmental settings are explored.

2020 ◽  
Vol 70 (2) ◽  
pp. 147-169
Author(s):  
Leschnik Michael

AbstractVector-borne diseases are one of the main causes of morbidity and mortality in small animals in Europe. Many of these diseases are well-known among veterinary practitioners and some of them are called emerging diseases as prevalence, temporal and spatial distribution seem to increase in Europe. The number of newly recognized pathogens, transmitted by a variety of arthropod vectors, that are relevant for dogs and cats, is also increasing every year. The prevalence among infected vectors and hosts is a hot topic in veterinary science throughout the entire continent, as well as the development of efficient diagnostic procedures, therapy and prophylactic measures. Companion animal vector-borne diseases comprise a large group of pathogens including viruses, bacteria, protozoa and helminths. These pathogens are mainly transmitted by bloodsucking arthropods (ticks, fleas, mosquitos, sand flies), and more seldom by direct transmission between vertebrate hosts. Vector prevalence and activity is influenced by local climate conditions, host species density, changes in landscape and land use. Human parameters such as poverty and migration affect the use of prophylactic measures against pathogen transmission and infection as well as increasing the zoonotic risk to introducing pathogens by infected humans. Small animal associated factors such as pet trade and pet travel spread infection and certain vectors such as ticks and fleas. All these factors pose several complex and significant challenges for veterinarians in clinical practice to decide on efficient laboratory work-up and constructive diagnostic procedures.


2019 ◽  
Vol 11 (2) ◽  
pp. 131-138
Author(s):  
Risqa Novita

The era of globalization allows migration fastly, so we do not have boundary of a country. This led to an increase of the infectious diseases. Indonesia also have an impact on this globalization by highly migration. Indonesia is a tropical country and has diversity of vectors that can transmit various tropical diseases. One of a vector  which transmitted vector borne diseases is a bug Triatoma. Triatoma lives near the people’s house and in the bed. One of the species of Triatoma which found in indonesia is Triatoma rubrifasciata which is vector of Chagas disease and Leprosy and can cause allergic reaction of the skin after the bite. Triatoma infection in Southeast Asia, including in Indonesia has not been widely reported. This condition should make us to be alert on the disease emerging or re emerging diseases that can be caused by Triatoma . This article aims to study Triatoma as a vector of emerging and potentially re emerging diseases in Indonesia, which are Chagas, skin allergic reaction after bite and Leprosy. Methods. Literature review by look in google scholar and pubmed, by search using keywords: emerging parasitic, vector borne diseases, Triatoma in Southeast Asia. Inclusion criterias are research articles, laboratory research, case report, and systematic surveillance. Based on the literatures, tracing data that Indonesia has a chance to be  the cases of Chagas disease, Skin allergic reaction of Triatoma and Leprosy. It is supposed to made the vigilance on  make a early warning system, so our public health coud be achieved highest.


Author(s):  
Leila Khouaja ◽  
Slimane Ben Miled ◽  
Hassan Hbid

Epidemiology had an important development these last years allowing the resolution of a large number of problems and had good prediction on disease evolution. However, the transmission of several vector-borne diseases is closely connected to environmental protagonists, specially in the parasite-host interaction. Moreover, understanding the disease transmission is related to studying the ecology of all protagonists. These two levels of complexity(epidemiology and ecology) cannot be separated and have to be studied as a whole in a systematic way. Our goal is to understand the interaction of climate change on the evolution of a disease when the vector has ecological niche that depends on physiological state of development. We are particularly interested in tick vector diseases which are serious health problem affecting humans as well as domestic animals in many parts of the world. These infections are transmitted through a bite of an infected tick, and it appears that most of these infections are widely present in some wildlife species. L'épidémiologie a connu un développement important ces dernières années. Cette discipline a permis une meilleure compréhension del'évolution de maladies. Cependant, plusieurs maladies à transmission vectorielle sont étroitement liées aux protagonistes environnementaux. Ce constat est particulièrement vrai dans le contexte des interactions du parasite avec son hôte. De plus, comprendre la transmission de maladie est lié à l'étude de l'écologie de tous les protagonistes. Notre objectif est de comprendre l'influence du changement climatique sur l'évolution des maladies lorsque la niche écologique du vecteur dépend de l'état de développement physiologique de son hôte. Nous sommes particulièrement intéressés par les maladies vectorielles à tiques qui constituent un grave problème de santé touchant l'être humain et les animaux domestiques dans de nombreuses régions du monde. Ces infections sont généralement transmises par la piqûre d'une tique infectée et il apparaît que la plupart de ces infections sont largement présentées dans certaines espèces fauniques


Author(s):  
Maha Bouzid

Waterborne diseases are caused by a multitude of pathogens and associated with a significant burden in both developed and developing countries. While the assessment of the adverse impacts of climate change on human heath from infectious diseases has mainly focused on vector-borne diseases, waterborne diseases prevalence and transmission patterns are also likely to be impacted by environmental change. This chapter will outline relevant waterborne pathogens, summarise the impact of climate change on disease transmission and explore climate change adaptation options in order to reduce the increased burden of waterborne diseases.


2017 ◽  
pp. 1041-1055
Author(s):  
Maha Bouzid

Waterborne diseases are caused by a multitude of pathogens and associated with a significant burden in both developed and developing countries. While the assessment of the adverse impacts of climate change on human heath from infectious diseases has mainly focused on vector-borne diseases, waterborne diseases prevalence and transmission patterns are also likely to be impacted by environmental change. This chapter will outline relevant waterborne pathogens, summarise the impact of climate change on disease transmission and explore climate change adaptation options in order to reduce the increased burden of waterborne diseases.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Meredith R. Spence Beaulieu ◽  
Jennifer L. Federico ◽  
Michael H. Reiskind

Abstract Background Urbanization is occurring rapidly on a global scale and is altering mosquito communities, creating assemblages that are characteristically less diverse. Despite high rates of urbanization and ample examples of vector-borne diseases transmitted by multiple species, the effects of urbanization-driven mosquito diversity losses on disease transmission has not been well explored. We investigated this question using the dog heartworm, a filarial parasite vectored by numerous mosquito species. Methods We trapped host-seeking mosquitoes in undeveloped areas and neighborhoods of different ages in Wake County, North Carolina, USA, analyzing captured mosquitoes for heartworm DNA. We compared within-mosquito heartworm infection across land-use types by Kruskal–Wallis and likelihood ratio tests. Using zip code level data acquired from dogs in a local shelter, we performed linear regressions of within-host heartworm prevalence by within-mosquito heartworm prevalence as well as by three mosquito diversity measures. We also determined the best predictor of host-level prevalence among models including within-mosquito infection, mosquito diversity and abundance, and socioeconomic status as variables. Results Suburban areas had lower within-mosquito heartworm prevalence and lower likelihood of heartworm-positive mosquitoes than did undeveloped field sites, although no differences were seen between suburban and undeveloped wooded sites. No relationships were noted between within-mosquito and within-host heartworm prevalence. However, mosquito diversity metrics were positively correlated with host heartworm prevalence. Model selection revealed within-host prevalence was best predicted by a positive relationship with mosquito Shannon–Wiener diversity and a negative relationship with household income. Conclusions Our results demonstrate that decreases in mosquito diversity due to urbanization alter vector-borne disease risk. With regard to dog heartworm disease, this loss of mosquito diversity is associated with decreased heartworm prevalence within both the vector and the host. Although the response is likely different for diseases transmitted by one or few species, mosquito diversity losses leading to decreased transmission could be generalizable to other pathogens with multiple vectors. This study contributes to better understanding of the effects of urbanization and the role of vector diversity in multi-vectored pathosystems.


2015 ◽  
Vol 370 (1665) ◽  
pp. 20130551 ◽  
Author(s):  
Paul E. Parham ◽  
Joanna Waldock ◽  
George K. Christophides ◽  
Deborah Hemming ◽  
Folashade Agusto ◽  
...  

Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10–15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector–pathogen systems.


2005 ◽  
Vol 2 (4) ◽  
pp. 281-293 ◽  
Author(s):  
J.M Heffernan ◽  
R.J Smith ◽  
L.M Wahl

The basic reproductive ratio, R 0 , is defined as the expected number of secondary infections arising from a single individual during his or her entire infectious period, in a population of susceptibles. This concept is fundamental to the study of epidemiology and within-host pathogen dynamics. Most importantly, R 0 often serves as a threshold parameter that predicts whether an infection will spread. Related parameters which share this threshold behaviour, however, may or may not give the true value of R 0 . In this paper we give a brief overview of common methods of formulating R 0 and surrogate threshold parameters from deterministic, non-structured models. We also review common means of estimating R 0 from epidemiological data. Finally, we survey the recent use of R 0 in assessing emerging diseases, such as severe acute respiratory syndrome and avian influenza, a number of recent livestock diseases, and vector-borne diseases malaria, dengue and West Nile virus.


2021 ◽  
Vol 9 ◽  
Author(s):  
Bayissa Chala ◽  
Feyissa Hamde

Vector-borne emerging and re-emerging diseases pose considerable public health problem worldwide. Some of these diseases are emerging and/or re-emerging at increasing rates and appeared in new regions in the past two decades. Studies emphasized that the interactions among pathogens, hosts, and the environment play a key role for the emergence or re-emergence of these diseases. Furthermore, social and demographic factors such as human population growth, urbanization, globalization, trade exchange and travel and close interactions with livestock have significantly been linked with the emergence and/or re-emergence of vector-borne diseases. Other studies emphasize the ongoing evolution of pathogens, proliferation of reservoir populations, and antimicrobial drug use to be the principal exacerbating forces for emergence and re-emergence of vector-borne infectious diseases. Still other studies equivocally claim that climate change has been associated with appearance and resurgence of vector-borne infectious diseases. Despite the fact that many important emerging and re-emerging vector-borne infectious diseases are becoming better controlled, our success in stopping the many new appearing and resurging vector-borne infectious diseases that may happen in the future seems to be uncertain. Hence, this paper reviews and synthesizes the existing literature to explore global patterns of emerging and re-emerging vector-borne infections and the challenges for their control. It also attempts to give insights to the epidemiological profile of major vector-borne diseases including Zika fever, dengue, West Nile fever, Crimean-Congo hemorrhagic fever, Chikungunya, Yellow fever, and Rift Valley fever.


2021 ◽  
Vol 2 ◽  
Author(s):  
Lorena M. Simon ◽  
Thiago F. Rangel

Dengue is an ongoing problem, especially in tropical countries. Like many other vector-borne diseases, the spread of dengue is driven by a myriad of climate and socioeconomic factors. Within developing countries, heterogeneities on socioeconomic factors are expected to create variable conditions for dengue transmission. However, the relative role of socioeconomic characteristics and their association with climate in determining dengue prevalence are poorly understood. Here we assembled essential socioeconomic factors over 5570 municipalities across Brazil and assessed their effect on dengue prevalence jointly with a previously predicted temperature suitability for transmission. Using a simultaneous autoregressive approach (SAR), we showed that the variability in the prevalence of dengue cases across Brazil is primarily explained by the combined effect of climate and socioeconomic factors. At some dengue seasons, the effect of temperature on transmission potential showed to be a more significant proxy of dengue cases. Still, socioeconomic factors explained the later increase in dengue prevalence over Brazil. In a heterogeneous country such as Brazil, recognizing the transmission drivers by vectors is a fundamental issue in effectively predicting and combating tropical diseases like dengue. Ultimately, it indicates that not considering socioeconomic factors in disease transmission predictions might compromise efficient surveillance strategies. Our study shows that sanitation, urbanization, and GDP are regional indicators that should be considered along with temperature suitability on dengue transmission, setting effective directions to mosquito-borne disease control.


Sign in / Sign up

Export Citation Format

Share Document