Drawing schematic diagrams

Author(s):  
Matthew J. Genge

Schematic diagrams are invaluable in Earth Science in the communication of concepts in both publications and teaching. These diagrams can also be used during fieldwork to help develop interpretations of structures, palaeoenvironments, and geological processes. This chapter describes methods used to create block diagrams of structures and landscapes, surface diagrams of folds and faults, and process diagrams used to summarize interpretations of a wide range of processes. Schematic diagrams can and should be included in field notes. Process diagrams represent a cartoon of interpretative thoughts. Four worked examples of schematic diagrams are provided to illustrate their uses and construction.

Author(s):  
Matthew J. Genge

Drawings, illustrations, and field sketches play an important role in Earth Science since they are used to record field observations, develop interpretations, and communicate results in reports and scientific publications. Drawing geology in the field furthermore facilitates observation and maximizes the value of fieldwork. Every geologist, whether a student, academic, professional, or amateur enthusiast, will benefit from the ability to draw geological features accurately. This book describes how and what to draw in geology. Essential drawing techniques, together with practical advice in creating high quality diagrams, are described the opening chapters. How to draw different types of geology, including faults, folds, metamorphic rocks, sedimentary rocks, igneous rocks, and fossils, are the subjects of separate chapters, and include descriptions of what are the important features to draw and describe. Different types of sketch, such as drawings of three-dimensional outcrops, landscapes, thin-sections, and hand-specimens of rocks, crystals, and minerals, are discussed. The methods used to create technical diagrams such as geological maps and cross-sections are also covered. Finally, modern techniques in the acquisition and recording of field data, including photogrammetry and aerial surveys, and digital methods of illustration, are the subject of the final chapter of the book. Throughout, worked examples of field sketches and illustrations are provided as well as descriptions of the common mistakes to be avoided.


Author(s):  
Yue Cai ◽  
Troy E Rasbury ◽  
Kathleen M Wooton ◽  
Xin Jiang ◽  
Di Wang

Understanding the movement of fluids in the solid Earth system is crucial for answering a wide range of important questions in Earth Science. Boron (B) is a perfect tracer for...


Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 731-742 ◽  
Author(s):  
D Lal ◽  
A J T Jull

Nuclear interactions of cosmic rays produce a number of stable and radioactive isotopes on the earth (Lai and Peters 1967). Two of these, 14C and 10Be, find applications as tracers in a wide variety of earth science problems by virtue of their special combination of attributes: 1) their source functions, 2) their half-lives, and 3) their chemical properties. The radioisotope, 14C (half-life = 5730 yr) produced in the earth's atmosphere was the first to be discovered (Anderson et al. 1947; Libby 1952). The next longer-lived isotope, also produced in the earth's atmosphere, 10Be (half-life = 1.5 myr) was discovered independently by two groups within a decade (Arnold 1956; Goel et al. 1957; Lal 1991a). Both the isotopes are produced efficiently in the earth's atmosphere, and also in solids on the earth's surface. Independently and jointly they serve as useful tracers for characterizing the evolutionary history of a wide range of materials and artifacts. Here, we specifically focus on the production of 14C in terrestrial solids, designated as in-situ-produced 14C (to differentiate it from atmospheric 14C, initially produced in the atmosphere). We also illustrate the application to several earth science problems. This is a relatively new area of investigations, using 14C as a tracer, which was made possible by the development of accelerator mass spectrometry (AMS). The availability of the in-situ 14C variety has enormously enhanced the overall scope of 14C as a tracer (singly or together with in-situ-produced 10Be), which eminently qualifies it as a unique tracer for studying earth sciences.


2021 ◽  
Vol 11 (12) ◽  
pp. 5466
Author(s):  
Federico Pasquaré Mariotto ◽  
Varvara Antoniou ◽  
Kyriaki Drymoni ◽  
Fabio Luca Bonali ◽  
Paraskevi Nomikou ◽  
...  

We document and show a state-of-the-art methodology that could allow geoheritage sites (geosites) to become accessible to scientific and non-scientific audiences through immersive and non-immersive virtual reality applications. This is achieved through a dedicated WebGIS platform, particularly handy in communicating geoscience during the COVID-19 era. For this application, we selected nine volcanic outcrops in Santorini, Greece. The latter are mainly associated with several geological processes (e.g., dyking, explosive, and effusive eruptions). In particular, they have been associated with the famous Late Bronze Age (LBA) eruption, which made them ideal for geoheritage popularization objectives since they combine scientific and educational purposes with geotourism applications. Initially, we transformed these stunning volcanological outcrops into geospatial models—the so called virtual outcrops (VOs) here defined as virtual geosites (VGs)—through UAV-based photogrammetry and 3D modeling. In the next step, we uploaded them on an online platform that is fully accessible for Earth science teaching and communication. The nine VGs are currently accessible on a PC, a smartphone, or a tablet. Each one includes a detailed description and plenty of annotations available for the viewers during 3D exploration. We hope this work will be regarded as a forward model application for Earth sciences' popularization and make geoheritage open to the scientific community and the lay public.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Vilde Dimmen ◽  
Atle Rotevatn ◽  
Casey W. Nixon

Fluid flow in the subsurface is fundamental in a variety of geological processes including volcanism, metamorphism, and mineral dissolution and precipitation. It is also of economic and societal significance given its relevance, for example, within groundwater and contaminant transport, hydrocarbon migration, and precipitation of ore-forming minerals. In this example-based overview, we use the distribution of iron oxide precipitates as a proxy for palaeofluid flow to investigate the relationship between fluid flow, geological structures, and depositional architecture in sedimentary rocks. We analyse and discuss a number of outcrop examples from sandstones and carbonate rocks in New Zealand, Malta, and Utah (USA), showing controls on fluid flow ranging from simple geological heterogeneities to more complex networks of structures. Based on our observations and review of a wide range of the published literature, we conclude that flow within structures and networks is primarily controlled by structure type (e.g., joint and deformation band), geometry (e.g., length and orientation), connectivity (i.e., number of connections in a network), kinematics (e.g., dilation and compaction), and interactions (e.g., relays and intersections) within the network. Additionally, host rock properties and depositional architecture represent important controls on flow and may interfere to create hybrid networks, which are networks of combined structural and stratal conduits for flow.


2020 ◽  
Author(s):  
Philipp Eichheimer ◽  
Marcel Thielmann ◽  
Wakana Fujita ◽  
Gregor J. Golabek ◽  
Michihiko Nakamura ◽  
...  

Abstract. Fluid flow on different scales is of interest for several Earth science disciplines like petrophysics, hydrogeology and volcanology. To parameterize fluid flow in large-scale numerical simulations (e.g. groundwater and volcanic systems), flow properties on the microscale need to be considered. For this purpose experimental and numerical investigations of flow through porous media over a wide range of porosities are necessary. In the present study we sinter glass bead media with various porosities. The microstructure, namely effective porosity and effective specific surface, is investigated using image processing. We determine flow properties like hydraulic tortuosity and permeability using both experimental measurements and numerical simulations. By fitting microstructural and flow properties to porosity, we obtain a modified Kozeny-Carman equation for isotropic low-porosity media, that can be used to simulate permeability in large-scale numerical models. To verify the modified Kozeny-Carman equation we compare it to the computed and measured permeability values.


2018 ◽  
Vol 6 (3) ◽  
pp. 669-686 ◽  
Author(s):  
Michael Dietze

Abstract. Environmental seismology is the study of the seismic signals emitted by Earth surface processes. This emerging research field is at the intersection of seismology, geomorphology, hydrology, meteorology, and further Earth science disciplines. It amalgamates a wide variety of methods from across these disciplines and ultimately fuses them in a common analysis environment. This overarching scope of environmental seismology requires a coherent yet integrative software which is accepted by many of the involved scientific disciplines. The statistic software R has gained paramount importance in the majority of data science research fields. R has well-justified advances over other mostly commercial software, which makes it the ideal language to base a comprehensive analysis toolbox on. The article introduces the avenues and needs of environmental seismology, and how these are met by the R package eseis. The conceptual structure, example data sets, and available functions are demonstrated. Worked examples illustrate possible applications of the package and in-depth descriptions of the flexible use of the functions. The package has a registered DOI, is available under the GPL licence on the Comprehensive R Archive Network (CRAN), and is maintained on GitHub.


Author(s):  
Matthew J. Genge

Advances in technology have enabled new methods in the acquisition and recording of field data in geology and its presentation within publications. These techniques compliment, rather than replace, traditional field observations. This chapter describes the use of photogrammetry and aerial drone surveys in constructing three-dimensional models of geological features, which provide valuable data when combined with field notes on lithology. Digital methods in the analysis and processing of images are discussed together with methods in digital drawing and painting to produce publication-ready diagrams for Earth Science. Photographs for use in publications should be corrected to ensure optimal contrast and brightness.


Author(s):  
Matthew J. Genge

Drawings of landscapes are often used to record large-scale geological structures in Earth Science. This chapter describes how to draw geological features exposed within landscapes with a focus on the methods used to produce accurate and detailed field sketches. The tactics in drawing large fields of view, landscapes with significant topography, and vegetated landscapes with sparse outcrops are described. Three worked examples of landscape field sketches are provided to illustrate how best to record tectonic structures and volcanic features exposed over topography. Topographic features such as ravines and ridges can be added as lines to add additional value. Common mistakes considered include insufficient detail and schematic vegetation.


2014 ◽  
Vol 4 (2) ◽  
pp. 64-77 ◽  
Author(s):  
Robin H. Kay

The purpose of this paper was to explore research-based applications for using video podcasts in an online learning environment. Five key video podcast uses were examined including administration, instruction, student assignments, feedback, and community. Administrative video podcasts provide course information on areas such as learning goals, lesson plan instructions, course policies, and homework or assignment expectations. Instruction-based video podcasts present short summaries or worked examples for teaching specific concepts. Student assignment video podcasts offer a creative way for students to demonstrate a variety of skills in a wide range of subject areas. Feedback-based video podcasts provide formative guidance to students about their progress or summative evaluation for assignments they complete. Finally, community-based video podcasts help build instructor-to-peer and peer-to-peer connections within an online learning course. Future exploration on the design of video podcasts, regardless of the application used, is discussed.


Sign in / Sign up

Export Citation Format

Share Document