Phase Transitions and the Ising Model

Author(s):  
Robert H. Swendsen

Chapter 17 presented one example of a phase transition, the van der Waals gas. This chapter provides another, the Ising model, a widely studied model of phase transitions. We first give the solution for the Ising chain (one-dimensional model), including the introduction of the transfer matrix method. Higher dimensions are treated in the Mean Field Approximation (MFA), which is also extended to Landau theory. The Ising model is deceptively simple. It can be defined in a few words, but it displays astonishingly rich behavior. It originated as a model of ferromagnetism in which the magnetic moments were localized on lattice sites and had only two allowed values.

2014 ◽  
Vol 215 ◽  
pp. 55-60 ◽  
Author(s):  
Sergey N. Martynov

A model for the description of two-subsystem Heisenberg ferrimagnet with frustrated intersubsystem exchange and competition between exchange interactions in a subsystem is proposed. The conditions of the existence of noncollinear Yafet-Kittel state and partially ordered magnetic structure are investigated. The phase diagram of competition parameter vs temperature is obtained in the mean field approximation. The peculiarities of the succesive magnetic phase transitions are considered.


2009 ◽  
Vol 23 (24) ◽  
pp. 4963-4976 ◽  
Author(s):  
A. BENYOUSSEF ◽  
A. EL KENZ ◽  
M. EL YADARI ◽  
M. LOULIDI

A mean-field approximation is developed for a decorated ferrimagnetic Ising model, in which the two magnetic atoms A and B have spins σ=1/2 and S=1, respectively. In this system, the exchange interaction between nearest-neighbors of atom B is taken into account. Some interesting phenomena, such as the appearance of three types of phase diagrams and the existence of one and two compensation points are found. Phase diagrams and temperature dependence of the magnetizations of the system are investigated in detail.


1994 ◽  
Vol 08 (28) ◽  
pp. 3963-3986
Author(s):  
EVGENIA J. BLAGOEVA

A generalized Landau free energy for a complex order parameter expanded up to sixth-order is investigated using group theoretical arguments and the mean-field approximation. Results for the phase transitions that occur are presented. The phase diagram for all allowed values of the expansion coefficients is constructed with an emphasis placed on the influence of the anisotropy in the order parameter space. The results can be used in discussions of unconventional superconductors and modulated structural and magnetic orderings.


1997 ◽  
Vol 11 (13) ◽  
pp. 565-570
Author(s):  
G. L. S. Paula ◽  
W. Figueiredo

We have applied the Glauber and Metropolis prescriptions to investigate the stationary states of the Ising model in one and two dimensions. We have employed the formalism of the master equation to follow the evolution of the system towards the stationary states. Although the Glauber and Metropolis transition rates lead the system to the same equilibrium states for the Ising model in the Monte Carlo simulations, we show that they can predict different results if we disregard the correlations between spins. The critical temperature of the one-dimensional Ising model cannot even be found by using the Metropolis algorithm and the mean field approximation. However, taking into account only correlations between nearest neighbor spins, the resulting stationary states become identical for both Glauber and Metropolis transition rates.


2006 ◽  
Vol 20 (04) ◽  
pp. 455-467 ◽  
Author(s):  
OSMAN CANKO ◽  
MUSTAFA KESKIN

Analytical expressions of the order parameters near the transition temperatures in the spin-3/2 Ising system with bilinear (J) and biquadratic (K) interactions are presented for various values of J/K. First, we obtain the free energy expression and the equations to determine order parameters by using the mean-field approximation. Then, the order parameters are expressed in the vicinity of the transition temperatures in which these expressions are very important to study the dynamics of the system by means of Onsager's theory of irreversible thermodynamics. Hence, we investigate the phase transitions occurring in the system and also obtain two tricritical points analytically. Finally, the specific heat and magnetic susceptibility are calculated and an argument about the critical exponents at the second-order phase transitions and tricritical points is given.


2015 ◽  
Vol 29 (06) ◽  
pp. 1530005 ◽  
Author(s):  
Hsin-Hua Lai ◽  
Hsiang-Hsuan Hung

Time-reversal symmetric topological insulator (TI) is a novel state of matter that a bulk-insulating state carries dissipationless spin transport along the surfaces, embedded by the Z2 topological invariant. In the noninteracting limit, this exotic state has been intensively studied and explored with realistic systems, such as HgTe/(Hg, Cd)Te quantum wells. On the other hand, electronic correlation plays a significant role in many solid-state systems, which further influences topological properties and triggers topological phase transitions. Yet an interacting TI is still an elusive subject and most related analyses rely on the mean-field approximation and numerical simulations. Among the approaches, the mean-field approximation fails to predict the topological phase transition, in particular at intermediate interaction strength without spontaneously breaking symmetry. In this paper, we develop an analytical approach based on a combined perturbative and self-consistent mean-field treatment of interactions that is capable of capturing topological phase transitions beyond either method when used independently. As an illustration of the method, we study the effects of short-ranged interactions on the Z2 TI phase, also known as the quantum spin Hall (QSH) phase, in three generalized versions of the Kane–Mele (KM) model at half-filling on the honeycomb lattice. The results are in excellent agreement with quantum Monte Carlo (QMC) calculations on the same model and cannot be reproduced by either a perturbative treatment or a self-consistent mean-field treatment of the interactions. Our analytical approach helps to clarify how the symmetries of the one-body terms of the Hamiltonian determine whether interactions tend to stabilize or destabilize a topological phase. Moreover, our method should be applicable to a wide class of models where topological transitions due to interactions are in principle possible, but are not correctly predicted by either perturbative or self-consistent treatments.


2009 ◽  
Vol 64 (11) ◽  
pp. 723-728
Author(s):  
Bao-Bing Zheng ◽  
Xiao-Yu Kuang ◽  
Shao-Mei Chang ◽  
Ya-Ru Zhao ◽  
Wen-Qiang Li

We examine the critical behaviour of a finite alternating ferroelectric superlattice based on the transverse Ising model within the framework of the mean-field approximation. The results indicate that the features of the phase diagrams can be greatly modified by changing the transverse Ising model parameters. The transition temperature of alternating superlattice is described as function of the inter- and intra-layer exchange interactions, the strength of the transverse field, the superlattice thickness and the polarizations. In addition, the effects of surface modification on finite superlattices are also studied.


1997 ◽  
Vol 50 (1) ◽  
pp. 123
Author(s):  
N. Ishii ◽  
H. Asami ◽  
W. Bentz ◽  
K. Yazaki

The nucleon and the delta are described as solutions of the relativistic Faddeev equation in the NJL model. We discuss the dependence of the baryon masses on the particular form of the four-Fermi interaction Lagrangians. Using the quark–diquark wave function, we calculate some bound state matrix elements such as the axial coupling constants, magnetic moments of the nucleon, the pion-nucleon sigma term and the proton-neutron mass difference. We also try to compare two pictures of describing the baryons in the NJL model, i.e. the mean-field approximation and the relativistic Faddeev approach. As a first step, we discuss how to improve the mean-field approximation by introducing an effective interaction. We also discuss the perturbative estimate of the deformation of the `vacuum" in the Faddeev approach.


Sign in / Sign up

Export Citation Format

Share Document