Rice and Forest Farming in East and South-East Asia

Author(s):  
Graeme Barker

East and South-East Asia is a vast and diverse region (Fig. 6.1). The northern boundary can be taken as approximately 45 degrees latitude, from the Gobi desert on the west across Manchuria to the northern shores of Hokkaido, the main island of northern Japan. The southern boundary is over 6,000 kilometres away: the chain of islands from Java to New Guinea, approximately 10 degrees south of the Equator. From west to east across South-East Asia, from the western tip of Sumatra at 95 degrees longitude to the eastern end of New Guinea at 150 degrees longitude, is also some 6,000 kilometres. Transitions to farming within this huge area are discussed in this chapter in the context of four major sub-regions: China; the Korean peninsula and Japan; mainland South-East Asia (Vietnam, Laos, Cambodia, Thailand, the Malay peninsula); and island South-East Asia (principally Taiwan, the Philippines, Sumatra, Java, Borneo, Sulawesi, and New Guinea). The chapter also discusses the development of agricultural systems across the Pacific islands to the east, both in island Melanesia (the Bismarck Archipelago and the Solomon Islands east of New Guinea) and in what Pacific archaeologists are terming ‘Remote Oceania’, the islands dotted across the central Pacific as far as Hawaii 6,000 kilometres east of Taiwan and Easter Island some 9,000 kilometres east of New Guinea—a region as big as East Asia and South-East Asia put together. The phytogeographic zones of China reflect the gradual transition from boreal to temperate to tropical conditions, as temperatures and rainfall increase moving southwards (Shi et al., 1993; Fig. 6.2 upper map): coniferous forest in the far north; mixed coniferous and deciduous forest in north-east China (Manchuria) extending into Korea; temperate deciduous and broadleaved forest in the middle and lower valley of the Huanghe (or Yellow) River and the Huai River to the south; sub-tropical evergreen broad-leaved forest in the middle and lower valley of the Yangzi (Yangtze) River; and tropical monsoonal rainforest on the southern coasts, which then extends southwards across mainland and island South-East Asia. Climate and vegetation also differ with altitude and distance from the coast.

2018 ◽  
Vol 66 (7) ◽  
pp. 556 ◽  
Author(s):  
Michael K. Macphail ◽  
Robert S. Hill

Fossil pollen and spores preserved in drillcore from both the upper South Alligator River (SARV) in the Kakadu National Park, Northern Territory and the North-West Shelf, Western Australia provide the first record of plants and plant communities occupying the coast and adjacent hinterland in north-west Australia during the Paleogene 66 to 23million years ago. The palynologically-dominant woody taxon is Casuarinaceae, a family now comprising four genera of evergreen scleromorphic shrubs and trees native to Australia, New Guinea, South-east Asia and Pacific Islands. Rare taxa include genera now mostly restricted to temperate rainforest in New Guinea, New Caledonia, New Zealand, South-East Asia and/or Tasmania, e.g. Dacrydium, Phyllocladus and the Nothofagus subgenera Brassospora and Fuscospora. These appear to have existed in moist gorges on the Arnhem Land Plateau, Kakadu National Park. No evidence for Laurasian rainforest elements was found. The few taxa that have modern tropical affinities occur in Eocene or older sediments in Australia, e.g. Lygodium, Anacolosa, Elaeagnus, Malpighiaceae and Strasburgeriaceae. We conclude the wind-pollinated Oligocene to possibly Early Miocene vegetation in the upper SARV was Casuarinaceae sclerophyll forest or woodland growing under seasonally dry conditions and related to modern Allocasuarina/Casuarina formations. There are, however, strong floristic links to coastal communities growing under warm to hot, and seasonally to uniformly wet climates in north-west Australia during the Paleocene-Eocene.


2020 ◽  
Author(s):  
Jufen Lai ◽  
Chaofan Li ◽  
Riyu Lu

<p>Interannual variation of tropical cyclone (TC) landfall frequency is not consistent along the coast of East Asia, with large contrast of north and south East Asia coast regions in boreal summer. This study examines interannual variations of TC landfall frequency over north and south East Asia and identifies roles of the western North Pacific subtropical high (WNPSH) and TC genesis frequency associated with these variations. Although the total number of landing TC of north and south East Asia is similar, interannual variations of TC landfall frequency are relatively independent to each other, with the corresponding correlation coefficient north and south of 25°N is only –0.024 from 1979 to 2017. TC landfall over north East Asia is largely modulated by the circulation related to the WNPSH, while TC landfall in the south has no significant relationship with the WNPSH or other remote large-scale circulations. The WNPSH effectively regulates TC landfall in the north by modulating TC genesis east of the Philippines and steering flows. Nonetheless, the two factors have weak contradictory effects on TC landing in the south region. The frequency of TC genesis around the South China Sea directly connects to the TC landfall over south East Asia, which is modulated by the surrounding genesis environment, including relative humidity and relative vorticity. This work favors for a better understanding of the seasonal forecasts of TC landfall frequency and the subsequent climate service over East Asia.</p>


2012 ◽  
Vol 25 (6) ◽  
pp. 390 ◽  
Author(s):  
Gillian K. Brown ◽  
Daniel J. Murphy ◽  
James Kidman ◽  
Pauline Y. Ladiges

Acacia sensu stricto is found predominantly in Australia; however, there are 18 phyllodinous taxa that occur naturally outside Australia, north from New Guinea to Indonesia, Taiwan, the Philippines, south-western Pacific (New Caledonia to Samoa), northern Pacific (Hawaii) and Indian Ocean (Mascarene Islands). Our aim was to determine the phylogenetic position of these species within Acacia, to infer their biogeographic history. To an existing molecular dataset of 109 taxa of Acacia, we added 51 new accessions sequenced for the ITS and ETS regions of nuclear rDNA, including samples from 15 extra-Australian taxa. Data were analysed using both maximum parsimony and Bayesian methods. The phylogenetic positions of the extra-Australian taxa sampled revealed four geographic connections. Connection A, i.e. northern Australia?South-east Asia?south-western Pacific, is shown by an early diverging clade in section Plurinerves, which relates A. confusa from Taiwan and the Philippines (possibly Fiji) to A. simplex from Fiji and Samoa. That clade is related to A. simsii from southern New Guinea and northern Australia and other northern Australian species. Two related clades in section Juliflorae show a repeated connection (B), i.e. northern Australia?southern New Guinea?south-western Pacific. One of these is the ?A. auriculiformis clade', which includes A. spirorbis subsp. spirorbis from New Caledonia and the Loyalty Islands as sister to the Queensland species A. auriculiformis; related taxa include A. mangium, A. leptocarpa and A. spirorbis subsp. solandri. The ?A. aulacocarpa clade' includes A. aulacocarpa, A. peregrinalis endemic to New Guinea, A. crassicarpa from New Guinea and Australia, and other Australian species. Acacia spirorbis (syn. A. solandri subsp. kajewskii) from Vanuatu (Melanesia) is related to these two clades but its exact position is equivocal. The third biogeographic connection (C) is Australia?Timor?Flores, represented independently by the widespread taxon A. oraria (section Plurinerves) found on Flores and Timor and in north-eastern Queensland, and the Wetar island endemic A. wetarensis (Juliflorae). The fourth biogeographic connection (D), i.e. Hawaii?Mascarene?eastern Australia, reveals an extreme disjunct distribution, consisting of the Hawaiian koa (A. koa, A. koaia and A. kaoaiensis), sister to the Mascarene (R�union Island) species A. heterophylla; this clade is sister to the eastern Australian A. melanoxylon and A. implexa (all section Plurinerves), and sequence divergence between taxa is very low. Historical range expansion of acacias is inferred to have occurred several times from an Australian?southern New Guinean source. Dispersal would have been possible as the Australian land mass approached South-east Asia, and during times when sea levels were low, from the Late Miocene or Early Pliocene. The close genetic relationship of species separated by vast distances, from the Indian Ocean to the Pacific, is best explained by dispersal by Austronesians, early Homo sapiens migrants from Asia.


Brunonia ◽  
1979 ◽  
Vol 2 (2) ◽  
pp. 289 ◽  
Author(s):  
A Kanis

The Malesian representatives of Serianthes are revised and the relationships with those from nearby Pacific islands are discussed. A key is provided to all relevant taxa as well as maps showing their respective distributions. S. minahassae (Koord.) Merr. & ~ e r r y is reinstated here and newly subdivided with ssp. rninahassae in central Malesia, ssp. ledermannii (Harms) Kanis, stat. nov.. in New Guinea and ssp. fosbergii Kanis. nom. & stat. nov. (based on Albizia melanesica Fosb.), in the Bismarck Archipelago and the Solomon Islands. S. dilmyi Fosb. reaches from Sumatra and the Philippines to western New Guinea and the Admiralty Islands. S. robinsonii Fosb, is restricted to the southern Moluccas. S. hooglandii (Fosb.) Kanis, stat. nov., occurs in eastern New Guinea, with ssp. floridensis Kanis, ssp. nov.. in the Solomon Islands. S. kanehirae Fosb. is excluded, being restricted to the western Caroline Islands.


2021 ◽  
Author(s):  
Julie Sardos ◽  
Catherine Breton ◽  
Xavier Perrier ◽  
Ines Van Den Houwe ◽  
Janet Paofa ◽  
...  

AbstractThis study is an unprecedent exploration of the diversity of 226 diploid bananas genotyped with restriction-site-associated DNA sequencing data (RADseq) to clarify the processes that led to the creation of edible diploid AA bananas. This wide set included 72 seedy bananas, mostly M. acuminata from different genepools, and 154 edible, i.e. parthenocarpic and sterile, AA accessions obtained from genebanks and recent collecting missions. We highlighted the geographic organisation of the diversity of edible AAs and confirmed the admixed nature of many and further conducted introgressions tests within AAs from South East Asia and New Guinea. Lastly, taking advantage of the presence of an important number of M. acuminata ssp. banksii (22) and of AA from Papua New Guinea (76) in the set, we investigated the patterns of differentiation between wild and cultivated bananas seemingly belonging to the same genepool. We discovered a few cultivated AAs that may be of pure origins both in South-East Asia and in New Guinea. We also detected two undefined parental genepools in South East Asia for which regions of origin could be Thailand and a region between north Borneo and the Philippines, respectively. Finally, we suggest the existence of a third genepool in New Guinea island that might be a source population for both edible AAs and the local M. acuminata ssp. banksii.


Phytotaxa ◽  
2021 ◽  
Vol 479 (1) ◽  
pp. 71-82
Author(s):  
HUI SHANG ◽  
ZHEN-LONG LIANG ◽  
LI-BING ZHANG

A taxonomic revision of Didymochlaena (Didymochlaenaceae) from Asia and the Pacific region is conducted based on morphological and molecular evidence. Seven species are recognized, of which four are described as new and a new status is raised to a species from a variety. These four new species include D. fijiensis from Fiji, D. philippensis from the Philippines, D. punctata from Indonesia, Malaysia, and Thailand, and D. solomonensis from the Solomon Islands. The new status is D. oceanica from Papua New Guinea. Six of the seven species have all been erroneously treated as D. truncatula by earlier pteridologists. A key to the species is provided and descriptions of all species are given.


2021 ◽  
Author(s):  
Marianne Jennifer Datiles ◽  
Pedro Acevedo-Rodríguez

Abstract A. muricata is a small evergreen tree up to 9 m tall. It is native to tropical America but is widely planted in home gardens in South-East Asia. In Brazil, several small commercial plantations are in operation (about 2000 hectares are planted) with more planned. It was one of the earliest fruit trees introduced to the old world, brought to the Philippines by the Spanish. It is valued chiefly for its edible fruits, which are large (> 1 kg), heart-shaped and dark green in colour. The flesh is tart, desirable for ice creams and drinks, fruit jellies and sweetcakes. In the Philippines, young fruits with seeds still soft are used as a vegetable.


Author(s):  

Abstract A new distribution map is provided for Dysdercus sidae Montr. (D. insular is Stål) (Hemipt., Pyrrhocoridae). Host Plants: Cotton, kapok, Hibiscus spp. Information is given on the geographical distribution in AUSTRALASIA AND PACIFIC ISLANDS, Australia, Fiji, Loyalty Islands, New Caledonia, New Hebrides, Niue, Papua & New Guinea, Samoa, Solomon Islands, Tonga, Wallis Islands, Irian Jaya.


Itinerario ◽  
2000 ◽  
Vol 24 (3-4) ◽  
pp. 173-191 ◽  
Author(s):  
Robert Aldrich

At the end of the Second World War, the islands of Polynesia, Melanesia and Micronesia were all under foreign control. The Netherlands retained West New Guinea even while control of the rest of the Dutch East Indies slipped away, while on the other side of the South Pacific, Chile held Easter Island. Pitcairn, the Gilbert and Ellice Islands, Fiji and the Solomon Islands comprised Britain's Oceanic empire, in addition to informal overlordship of Tonga. France claimed New Caledonia, the French Establishments in Oceania (soon renamed French Polynesia) and Wallis and Futuna. The New Hebrides remained an Anglo-French condominium; Britain, Australia and New Zealand jointly administered Nauru. The United States' territories included older possessions – the Hawaiian islands, American Samoa and Guam – and the former Japanese colonies of the Northern Marianas, Mar-shall Islands and Caroline Islands administered as a United Nations trust territory. Australia controlled Papua and New Guinea (PNG), as well as islands in the Torres Strait and Norfolk Island; New Zealand had Western Samoa, the Cook Islands, Niue and Tokelau. No island group in Oceania, other than New Zealand, was independent.


Sign in / Sign up

Export Citation Format

Share Document