The Problem of Quantum Gravity: From Feelings to Phenomena

2020 ◽  
pp. 1-16
Author(s):  
Dean Rickles

This chapter provides a simple, schematic introduction to the problem of quantum gravity. The problem of quantum gravity spent much of its earliest history at the mercy of wider changes with respect to the ingredient theories, general relativity and quantum theory. Even once those theories settled down, quantum gravity remained firmly detached from experiments. This situation has only recently changed and promises to offer new phenomena to test proposed solutions to the problem which will enable us to make firmer statements about the more physical implications of these proposed solutions. However, we see that we may still face a problem of polysemicity stemming from the very differing interpretations and formulations that the ingredient theories allow, as well as differing motivations for pursuing quantum gravity.

2020 ◽  
pp. 41-70
Author(s):  
Dean Rickles

In this chapter we examine the very earliest work on the problem of quantum gravity (understood very liberally). We show that, even before the concept of the quantization of the gravitational field in 1929, there was a fairly lively investigation of the relationships between gravity and quantum stretching as far back as 1916, and certainly no suggestion that such a theory would not be forthcoming. Indeed, there are, rather, many suggestions explicitly advocating that an integration of quantum theory and general relativity (or gravitation, at least) is essential for future physics, in order to construct a satisfactory foundation. We also see how this belief was guided by a diverse family of underlying agendas and constraints, often of a highly philosophical nature.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1130 ◽  
Author(s):  
Stephon Alexander ◽  
Joao Magueijo ◽  
Lee Smolin

We present an extension of general relativity in which the cosmological constant becomes dynamical and turns out to be conjugate to the Chern–Simons invariant of the Ashtekar connection on a spatial slicing. The latter has been proposed Soo and Smolin as a time variable for quantum gravity: the Chern–Simons time. In the quantum theory, the inverse cosmological constant and Chern–Simons time will then become conjugate operators. The “Kodama state” gets a new interpretation as a family of transition functions. These results imply an uncertainty relation between Λ and Chern–Simons time; the consequences of which will be discussed elsewhere.


Author(s):  
S. Majid

We consider Hilbert’s problem of the axioms of physics at a qualitative or conceptual level. This is more pressing than ever as we seek to understand how both general relativity and quantum theory could emerge from some deeper theory of quantum gravity, and in this regard I have previously proposed a principle of self-duality or quantum Born reciprocity as a key structure. Here, I outline some of my recent work around the idea of quantum space–time as motivated by this non-standard philosophy, including a new toy model of gravity on a space–time consisting of four points forming a square. This article is part of the theme issue ‘Hilbert’s sixth problem’.


Author(s):  
S. A. Larin

We analyze the R + R2 model of quantum gravity where terms quadratic in the curvature tensor are added to the General Relativity action. This model was recently proved to be a self-consistent quantum theory of gravitation, being both renormalizable and unitary. The model can be made practically indistinguishable from General Relativity at astrophysical and cosmological scales by the proper choice of parameters.


2007 ◽  
Vol 16 (09) ◽  
pp. 1397-1474 ◽  
Author(s):  
MUXIN HAN ◽  
YONGGE MA ◽  
WEIMING HUANG

In the recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. The aim of loop quantum gravity is to construct a mathematically rigorous, background independent, non-perturbative quantum theory for a Lorentzian gravitational field on a four-dimensional manifold. In the approach, the principles of quantum mechanics are combined with those of general relativity naturally. Such a combination provides us a picture of, so-called, quantum Riemannian geometry, which is discrete on the fundamental scale. Imposing the quantum constraints in analogy from the classical ones, the quantum dynamics of gravity is being studied as one of the most important issues in loop quantum gravity. On the other hand, the semi-classical analysis is being carried out to test the classical limit of the quantum theory. In this review, the fundamental structure of loop quantum gravity is presented pedagogically. Our main aim is to help non-experts to understand the motivations, basic structures, as well as general results. It may also be beneficial to practitioners to gain insights from different perspectives on the theory. We will focus on the theoretical framework itself, rather than its applications, and do our best to write it in modern and precise langauge while keeping the presentation accessible for beginners. After reviewing the classical connection dynamical formalism of general relativity, as a foundation, the construction of the kinematical Ashtekar–Isham–Lewandowski representation is introduced in the content of quantum kinematics. The algebraic structure of quantum kinematics is also discussed. In the content of quantum dynamics, we mainly introduce the construction of a Hamiltonian constraint operator and the master constraint project. At last, some applications and recent advances are outlined. It should be noted that this strategy of quantizing gravity can also be extended to obtain other background-independent quantum gauge theories. There is no divergence within this background-independent and diffeomorphism-invariant quantization program of matter coupled to gravity.


2015 ◽  
Vol 30 (28n29) ◽  
pp. 1545015 ◽  
Author(s):  
Hal M. Haggard ◽  
Carlo Rovelli

We present a metric that describes conventional matter collapsing into a black hole, bouncing and emerging from a white hole, and that satisfies the vacuum Einstein equations everywhere, including in the interior of the black hole and the subsequent white hole, except for a small compact 4d “quantum tunneling” zone. This shows that a black hole can tunnel into a white hole without violating classical general relativity where this can be trusted. We observe that quantum gravity can affect the metric in a region outside the horizon without violating causality because small quantum effects might pile up over time. We study how quantum theory can determines the bouncing time.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 251
Author(s):  
Martin Bojowald

Background independence is often emphasized as an important property of a quantum theory of gravity that takes seriously the geometrical nature of general relativity. In a background-independent formulation, quantum gravity should determine not only the dynamics of space–time but also its geometry, which may have equally important implications for claims of potential physical observations. One of the leading candidates for background-independent quantum gravity is loop quantum gravity. By combining and interpreting several recent results, it is shown here how the canonical nature of this theory makes it possible to perform a complete space–time analysis in various models that have been proposed in this setting. In spite of the background-independent starting point, all these models turned out to be non-geometrical and even inconsistent to varying degrees, unless strong modifications of Riemannian geometry are taken into account. This outcome leads to several implications for potential observations as well as lessons for other background-independent approaches.


2021 ◽  
Author(s):  
Sangwha Yi

In the general relativity theory, using Einstein’s gravity field equation, we discover the spherical solution of the classical quantum gravity. The careful point is that this theory is different from the other quantum theory. This theory is made by the Einstein’s classical field equation.


These nine chapters, commissioned on the initiative of the Philosophy section of the British Academy, address fundamental questions about time in philosophy, physics, linguistics, and psychology. Are there facts about the future? Could we affect the past? Physics, general relativity and quantum theory give contradictory treatments of time. So in the search for a theory of quantum gravity, which should give way: general relativity or quantum theory? In linguistics and psychology, how does our language represent time, and how do our minds keep track of it?


2020 ◽  
Vol 75 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Maithresh Palemkota ◽  
Tejinder P. Singh

AbstractWe present a new, falsifiable quantum theory of gravity, which we name non-commutative matter-gravity. The commutative limit of the theory is classical general relativity. In the first two papers of this series, we have introduced the concept of an atom of space-time-matter (STM), which is described by the spectral action in non-commutative geometry, corresponding to a classical theory of gravity. We used the Connes time parameter, along with the spectral action, to incorporate gravity into trace dynamics. We then derived the spectral equation of motion for the gravity part of the STM atom, which turns out to be the Dirac equation on a non-commutative space. In the present work, we propose how to include the matter (fermionic) part and give a simple action principle for the STM atom. This leads to the equations for a quantum theory of gravity, and also to an explanation for the origin of spontaneous localisation from quantum gravity. We use spontaneous localisation to arrive at the action for classical general relativity (including matter source) from the action for STM atoms.


Sign in / Sign up

Export Citation Format

Share Document