Production of chimeras by blastocyst and morula injection of targeted ES cells

Author(s):  
Virginia Papaioannou ◽  
Randall Johnson

The ability of mammalian embryos to incorporate foreign cells and develop as chimeras has been exploited for a variety of purposes including the elucidation of cell lineages, the investigation of cell potential, the perpetuation of mutations produced in embryonic stem (ES) cells by gene targeting, and the subsequent analysis of these mutations. The extent of contribution of the foreign cells depends on their developmental synchrony with the host embryo and their mitotic and developmental potential, which may be severely restricted if the cells bear mutations. If the goal in making chimeras is the transmission of a mutation produced by gene targeting to the next generation, the mutant ES cells must have the capacity to undergo meiosis and gametogenesis. Cells from two different mammalian embryos were first combined experimentally to produce a composite animal, dubbed a chimera, nearly four decades ago. Pairs of cleaving, pre-implantation embryos were mechanically associated in vitro until they aggregated together to make single large morulae; these in turn resulted in chimeric offspring (1). Genetic markers were used to distinguish the contributions of the two embryos in these animals. Since then, various methods for making chimeras have been explored to address different types of questions (2). In 1972 it was reported that highly asynchronous embryonic cells, which had been cultured in vitro, could contribute to chimeras upon re-introduction into pre-implantation embryos (3). Not long afterward, several groups working with teratocarcinomas, tumours derived from germ cells of the gonad, discovered that stem cells from these tumours, known as embryonal carcinoma cells, could contribute to an embryo if introduced into pre-implantation stages (4-6). It appeared that the undifferentiated stem cells of the tumour had enough features in common with early embryonic cells that they could respond to the embryonic environment, differentiating in a normal manner, even after long periods in vitro. Their embryonic potential was limited, however, and many teratocarcinoma cell lines made only meagre contributions to the developing fetus or even produced tumours in chimeras (7). Either their derivation from tumours or their extended sojourn in vitro rendered these cells so dissimilar from early embryonic cells that they rarely, if ever, had full embryonic potential.

2011 ◽  
Vol 437 (2) ◽  
pp. 345-355 ◽  
Author(s):  
Satoshi Yasuda ◽  
Tetsuya Hasegawa ◽  
Tetsuji Hosono ◽  
Mitsutoshi Satoh ◽  
Kei Watanabe ◽  
...  

An understanding of the mechanism that regulates the cardiac differentiation of pluripotent stem cells is necessary for the effective generation and expansion of cardiomyocytes as cell therapy products. In the present study, we have identified genes that modulate the cardiac differentiation of pluripotent embryonic cells. We isolated P19CL6 cell sublines that possess distinct properties in cardiomyogenesis and extracted 24 CMR (cardiomyogenesis-related candidate) genes correlated with cardiomyogenesis using a transcriptome analysis. Knockdown of the CMR genes by RNAi (RNA interference) revealed that 18 genes influence spontaneous contraction or transcript levels of cardiac marker genes in EC (embryonal carcinoma) cells. We also performed knockdown of the CMR genes in mouse ES (embryonic stem) cells and induced in vitro cardiac differentiation. Three CMR genes, AW551984, 2810405K02Rik (RIKEN cDNA 2810405K02 gene) and Cd302 (CD302 antigen), modulated the cardiac differentiation of both EC cells and ES cells. Depletion of AW551984 attenuated the expression of the early cardiac transcription factor Nkx2.5 (NK2 transcription factor related locus 5) without affecting transcript levels of pluripotency and early mesoderm marker genes during ES cell differentiation. Activation of Wnt/β-catenin signalling enhanced the expression of both AW551984 and Nkx2.5 in ES cells during embryoid body formation. Our findings indicate that AW551984 is a novel regulator of cardiomyogenesis from pluripotent embryonic cells, which links Wnt/β-catenin signalling to Nkx2.5 expression.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1265-1275 ◽  
Author(s):  
Abby L. Olsen ◽  
David L. Stachura ◽  
Mitchell J. Weiss

Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases.


2019 ◽  
Author(s):  
Aseda Tena ◽  
Yuxiang Zhang ◽  
Nia Kyritsis ◽  
Anne Devorak ◽  
Jeffrey Zurita ◽  
...  

ABSTRACTMild replication stress enhances appearance of dozens of robust recurrent genomic break clusters, termed RDCs, in cultured primary mouse neural stem and progenitor cells (NSPCs). Robust RDCs occur within genes (“RDC-genes”) that are long and have roles in neural cell communications and/or have been implicated in neuropsychiatric diseases or cancer. We sought to develop an in vitro approach to determine whether specific RDC formation is associated with neural development. For this purpose, we adapted a system to induce neural progenitor cell (NPC) development from mouse embryonic stem cell (ESC) lines deficient for XRCC4 plus p53, a genotype that enhances DNA double-strand break (DSB) persistence to enhance detection. We tested for RDCs by our genome wide DSB identification approach that captures DSBs genome-wide via their ability to join to specific genomic Cas9/sgRNA-generated bait DSBs. In XRCC4/p53-deficient ES cells, we detected 7 RDCs, which were in genes, with two RDCs being robust. In contrast, in NPCs derived from these ES cell lines, we detected 29 RDCs, a large fraction of which were robust and associated with long, transcribed neural genes that were also robust RDC-genes in primary NSPCs. These studies suggest that many RDCs present in NSPCs are developmentally influenced to occur in this cell type and indicate that induced development of NPCs from ES cells provides an approach to rapidly elucidate mechanistic aspects of NPC RDC formation.SIGNIFICANCE STATEMENTWe previously discovered a set of long neural genes susceptible to frequent DNA breaks in primary mouse brain progenitor cells. We termed these genes RDC-genes. RDC-gene breakage during brain development might alter neural gene function and contribute to neurological diseases and brain cancer. To provide an approach to characterize the unknown mechanism of neural RDC-gene breakage, we asked whether RDC-genes appear in neural progenitors differentiated from embryonic stem cells in culture. Indeed, robust RDC-genes appeared in neural progenitors differentiated in culture and many overlapped with robust RDC-genes in primary brain progenitors. These studies indicate that in vitro development of neural progenitors provides a model system for elucidating how RDC-genes are formed.


Blood ◽  
1996 ◽  
Vol 87 (7) ◽  
pp. 2740-2749 ◽  
Author(s):  
CD Helgason ◽  
G Sauvageau ◽  
HJ Lawrence ◽  
C Largman ◽  
RK Humphries

Little is known about the molecular mechanisms controlling primitive hematopoietic stem cells, especially during embryogenesis. Homeobox genes encode a family of transcription factors that have gained increasing attention as master regulators of developmental processes and recently have been implicated in the differentiation and proliferation of hematopoietic cells. Several Hox homeobox genes are now known to be differentially expressed in various subpopulations of human hematopoietic cells and one such gene, HOXB4, has recently been shown to positively determine the proliferative potential of primitive murine bone marrow cells, including cells with long-term repopulating ability. To determine if this gene might influence hematopoiesis at the earliest stages of development, embryonic stem (ES) cells were genetically modified by retroviral gene transfer to overexpress HOXB4 and the effect on their in vitro differentiation was examined. HOXB4 overexpression significantly increased the number of progenitors of mixed erythroid/myeloid colonies and definitive, but not primitive, erythroid colonies derived from embryoid bodies (EBs) at various stages after induction of differentiation. There appeared to be no significant effect on the generation of granulocytic or monocytic progenitors, nor on the efficiency of EB formation or growth rate. Analysis of mRNA from EBs derived from HOXB4-transduced ES cells on different days of primary differentiation showed a significant increase in adult beta-globin expression, with no detectable effect on GATA-1 or embryonic globin (beta H-1). Thus, HOXB4 enhances the erythropoietic, and possibly more primitive, hematopoietic differentiative potential of ES cells. These results provide new evidence implicating Hox genes in the control of very early stages in the development of the hematopoietic system and highlight the utility of the ES model for gaining insights into the molecular genetic regulation of differentiation and proliferation events.


2007 ◽  
Vol 19 (1) ◽  
pp. 231
Author(s):  
S. Wang ◽  
X. Tang ◽  
Y. Niu ◽  
H. Chen ◽  
T. Li ◽  
...  

The rabbit, as a laboratory animal model, has several advantages in the study of human physiological disorders. In this study, stable putative pluripotent rabbit embryonic stem cells (rESCs) were derived from in vivo-fertilized and in vitro-cultured blastocysts. The rabbit ICMs were obtained by 0.05% trypsin–0.008% EDTA treatment and mechanical separation; the ES-like cell colonies seen several days later. ICM-derived outgrowths which were treated with 5 mg/mL-1 dispase, followed by 0.05% trypsin–0.008% EDTA, were mechanically disaggregated into small clumps and reseeded on MEFs. The putative ES cell lines maintained expression of pluripotent cells markers and normal XY karyotype for long periods of culture (>1 month). The putative rESCs expressed alkaline phosphatase, transcription factor Oct-4, stage-specific embryonic antigens (SSEA-1, SSEA-3, and SSEA-4), and tumor-related antigens (TRA-1-60 and TRA-1-81). The morphological characteristics of the putative ESCs are closer to those of human ESCs; their high speed of proliferation, however, is closer to that of mouse ESCs. Putative rabbit ESCs were induced to differentiate into many cell types including trophoblast cells, similar to primate ESCs, in vitro, and formed teratomas with derivatives of the 3 major germ layers in vivo when injected into SCID mice. Using RT-PCR measurement, but with some differences in ligands and inhibitors, and comparing with human and mouse ESCs, the putative rabbit ESCs expressed similar genes related to pluripotency (Oct-4, Nanog, SOX2, and UTF-1) and similar genes of FGF, WNT, and TGF signaling pathways related to the proliferation and self-renewal. Our further research work showed that TGF beta and FGF pathways cooperate to maintain pluripotency of rabbit ESCs similar to those of human ES cells.


Reproduction ◽  
2008 ◽  
Vol 135 (6) ◽  
pp. 771-784 ◽  
Author(s):  
Fariborz Izadyar ◽  
Francis Pau ◽  
Joel Marh ◽  
Natalia Slepko ◽  
Tracy Wang ◽  
...  

Spermatogonial stem cells (SSCs) maintain spermatogenesis by self-renewal and generation of spermatogonia committed to differentiation. Under certain in vitro conditions, SSCs from both neonatal and adult mouse testis can reportedly generate multipotent germ cell (mGC) lines that have characteristics and differentiation potential similar to embryonic stem (ES) cells. However, mGCs generated in different laboratories showed different germ cell characteristics, i.e., some retain their SSC properties and some have lost them completely. This raises an important question: whether mGC lines have been generated from different subpopulations in the mouse testes. To unambiguously identify and track germ line stem cells, we utilized a transgenic mouse model expressing green fluorescence protein under the control of a germ cell-specific Pou5f1 (Oct4) promoter. We found two distinct populations among the germ line stem cells with regard to their expression of transcription factor Pou5f1 and c-Kit receptor. Only the POU5F1+/c-Kit+ subset of mouse germ line stem cells, when isolated from either neonatal or adult testes and cultured in a complex mixture of growth factors, generates cell lines that express pluripotent ES markers, i.e., Pou5f1, Nanog, Sox2, Rex1, Dppa5, SSEA-1, and alkaline phosphatase, exhibit high telomerase activity, and differentiate into multiple lineages, including beating cardiomyocytes, neural cells, and chondrocytes. These data clearly show the existence of two distinct populations within germ line stem cells: one destined to become SSC and the other with the ability to generate multipotent cell lines with some pluripotent characteristics. These findings raise interesting questions about the relativity of pluripotency and the plasticity of germ line stem cells.


2012 ◽  
Vol 529-530 ◽  
pp. 385-390
Author(s):  
Koichi Imai ◽  
Fumio Watari ◽  
Kazuaki Nakamura ◽  
Akito Tanoue

The risks of nanomaterials for future generations should be elucidated. Thus, it is important to establish an experimental method to accurately examine embryotoxicity. We have conducted anin vitroembryotoxicity test with mouse ES cells to examine the embryotoxicities of various nanomaterials. In this study, the C60 fullerene did not influence the differentiation of ES-D3 cells and "non embryotoxicity". In the future, the biological safety should be comprehensively examined by improving dispersion in medium.


Author(s):  
Su-Chun Zhang ◽  
Xue-Jun Li ◽  
M Austin Johnson ◽  
Matthew T Pankratz

Cell therapy has been perceived as the main or ultimate goal of human embryonic stem (ES) cell research. Where are we now and how are we going to get there? There has been rapid success in devising in vitro protocols for differentiating human ES cells to neuroepithelial cells. Progress has also been made to guide these neural precursors further to more specialized neural cells such as spinal motor neurons and dopamine-producing neurons. However, some of the in vitro produced neuronal types such as dopamine neurons do not possess all the phenotypes of their in vivo counterparts, which may contribute to the limited success of these cells in repairing injured or diseased brain and spinal cord in animal models. Hence, efficient generation of neural subtypes with correct phenotypes remains a challenge, although major hurdles still lie ahead in applying the human ES cell-derived neural cells clinically. We propose that careful studies on neural differentiation from human ES cells may provide more immediate answers to clinically relevant problems, such as drug discovery, mechanisms of disease and stimulation of endogenous stem cells.


2009 ◽  
Vol 390 (10) ◽  
Author(s):  
Komal Loya ◽  
Reto Eggenschwiler ◽  
Kinarm Ko ◽  
Malte Sgodda ◽  
Francoise André ◽  
...  

Abstract In regenerative medicine pluripotent stem cells are considered to be a valuable self-renewing source for therapeutic cell transplantations, given that a functional organ-specific phenotype can be acquired by in vitro differentiation protocols. Furthermore, derivatives of pluripotent stem cells that mimic fetal progenitor stages could serve as an important tool to analyze organ development with in vitro approaches. Because of ethical issues regarding the generation of human embryonic stem (ES) cells, other sources for pluripotent stem cells are intensively studied. Like in less developed vertebrates, pluripotent stem cells can be generated from the female germline even in mammals, via parthenogenetic activation of oocytes. Recently, testis-derived pluripotent stem cells were derived from the male germline. Therefore, we compared two different hepatic differentiation approaches and analyzed the generation of definitive endoderm progenitor cells and their further maturation into a hepatic phenotype using murine parthenogenetic ES cells, germline-derived pluripotent stem cells, and ES cells. Applying quantitative RT-PCR, both germline-derived pluripotent cell lines show similar differentiation capabilities as normal murine ES cells and can be considered an alternative source for pluripotent stem cells in regenerative medicine.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Guillaume Pourcher ◽  
Christelle Mazurier ◽  
Yé Yong King ◽  
Marie-Catherine Giarratana ◽  
Ladan Kobari ◽  
...  

We previously described the large-scale production of RBCs from hematopoietic stem cells (HSCs) of diverse sources. Our present efforts are focused to produce RBCs thanks to an unlimited source of stem cells. Human embryonic stem (ES) cells or induced pluripotent stem cell (iPS) are the natural candidates. Even if the proof of RBCs production from these sources has been done, their amplification ability is to date not sufficient for a transfusion application. In this work, our protocol of RBC production was applied to HSC isolated from fetal liver (FL) as an intermediate source between embryonic and adult stem cells. We studied the erythroid potential of FL-derived CD34+cells. In thisin vitromodel, maturation that is enucleation reaches a lower level compared to adult sources as observed for embryonic or iP, but, interestingly, they (i) displayed a dramaticin vitroexpansion (100-fold more when compared to CB CD34+) and (ii) 100% cloning efficiency in hematopoietic progenitor assays after 3 days of erythroid induction, as compared to 10–15% cloning efficiency for adult CD34+cells. This work supports the idea that FL remains a model of study and is not a candidate forex vivoRBCS production for blood transfusion as a direct source of stem cells but could be helpful to understand and enhance proliferation abilities for primitive cells such as ES cells or iPS.


Sign in / Sign up

Export Citation Format

Share Document