Nanolithography using molecular films and processing

Author(s):  
C.L. McGuiness ◽  
R.K. Smith ◽  
M.E. Anderson ◽  
P.S. Weiss ◽  
D.L. Allara

This article focuses on the use of molecular films as building blocks for nanolithography. More specifically, it reviews efforts aimed at utilizing organic molecular assemblies in overcoming the limitations of lithography, including self-patterning and directed patterning. It considers the methods of patterning self-assembled organic monolayer films through soft-lithographic methods such as microcontact printing and nanoimprint lithography, through direct ‘write’ or ‘machine’ processes with a nanometer-sized tip and through exposure to electron or photon beams. It also discusses efforts to pattern the organic assemblies via the physicochemical self-assembling interactions, including patterning via phase separation of chemically different molecules and insertion of guest adsorbates into host matrices. Furthermore, it examines the efforts that have been made to couple patterned molecular assemblies with inorganic thin-film growth methods to form spatially constrained, three-dimensional thin films. Finally, it describes a hybrid self-assembly/conventional lithography (i.e. molecular rulers) approach to forming nanostructures.

2014 ◽  
Vol 1663 ◽  
Author(s):  
Garima Thakur ◽  
Kovur Prashanthi ◽  
Thomas Thundat

ABSTRACTSelf–assembly of molecular building blocks provides an interesting route to produce well-defined chemical structures. Tailoring the functionalities on the building blocks and controlling the time of self-assembly could control the properties as well as the structure of the resultant patterns. Spontaneous self-assembly of biomolecules can generate bio-interfaces for myriad of potential applications. Here we report self-assembled patterning of human serum albumin (HSA) protein in to ring structures on a polyethylene glycol (PEG) modified gold surface. The structure of the self-assembled protein molecules and kinetics of structure formation entirely revolved around controlling the nucleation of the base layer. The formation of different sizes of ring patterns is attributed to growth conditions of the PEG islands for bio-conjugation. These assemblies might be beneficial in forming structurally ordered architectures of active proteins such as HSA or other globular proteins.


2020 ◽  
Vol 6 (24) ◽  
pp. eaaz7202 ◽  
Author(s):  
Bijal B. Patel ◽  
Dylan J. Walsh ◽  
Do Hoon Kim ◽  
Justin Kwok ◽  
Byeongdu Lee ◽  
...  

Additive manufacturing of functional materials is limited by control of microstructure and assembly at the nanoscale. In this work, we integrate nonequilibrium self-assembly with direct-write three-dimensional (3D) printing to prepare bottlebrush block copolymer (BBCP) photonic crystals (PCs) with tunable structure color. After varying deposition conditions during printing of a single ink solution, peak reflected wavelength for BBCP PCs span a range of 403 to 626 nm (blue to red), corresponding to an estimated change in d-spacing of >70 nm (Bragg- Snell equation). Physical characterization confirms that these vivid optical effects are underpinned by tuning of lamellar domain spacing, which we attribute to modulation of polymer conformation. Using in situ optical microscopy and solvent-vapor annealing, we identify kinetic trapping of metastable microstructures during printing as the mechanism for domain size control. More generally, we present a robust processing scheme with potential for on-the-fly property tuning of a variety of functional materials.


MRS Bulletin ◽  
2005 ◽  
Vol 30 (10) ◽  
pp. 713-720 ◽  
Author(s):  
Thomas Bein

AbstractOrdered nanoscale pore systems such as those represented by zeolites offer many opportunities for the design of complex functional systems via self-assembly.With their large internal surface areas and tunable, well-defined crystalline pore structures that allow molecular sieving and ion exchange, zeolites can be adapted for numerous applications. The nanoscale reactors present in zeolite pore systems have been explored as structural templates for the spatial organization of numerous guests. Examples from various fields are discussed, such as the stabilization of organic dyes for the construction of energy transfer and storage systems, the construction of host–guest hybrid catalyst systems, and the encapsulation of conducting or semiconducting nanoscale wires and clusters. More complex, hierarchical forms of nanostructured matter become accessible when zeolite crystals are used as building blocks for the selfassembly of thin films or three-dimensional objects. A combination of weaker and stronger interactions ranging from dispersive forces, hydrogen bonding, and electrostatic interactions to covalent bonding can be used to build functional hierarchical constructs. Several examples and novel applications of such systems will be discussed, including oriented channel systems, chemical sensors, and hierarchical pore systems for catalytic reactions.


2015 ◽  
Vol 6 ◽  
pp. 632-639 ◽  
Author(s):  
Ping Du ◽  
David Bléger ◽  
Fabrice Charra ◽  
Vincent Bouchiat ◽  
David Kreher ◽  
...  

Two-dimensional (2D), supramolecular self-assembly at surfaces is now well-mastered with several existing examples. However, one remaining challenge to enable future applications in nanoscience is to provide potential functionalities to the physisorbed adlayer. This work reviews a recently developed strategy that addresses this key issue by taking advantage of a new concept, Janus tecton materials. This is a versatile, molecular platform based on the design of three-dimensional (3D) building blocks consisting of two faces linked by a cyclophane-type pillar. One face is designed to steer 2D self-assembly onto C(sp2)-carbon-based flat surfaces, the other allowing for the desired functionality above the substrate with a well-controlled lateral order. In this way, it is possible to simultaneously obtain a regular, non-covalent paving as well as supramolecular functionalization of graphene, thus opening interesting perspectives for nanoscience applications.


2019 ◽  
Author(s):  
James D. Tang ◽  
Cameron Mura ◽  
Kyle J. Lampe

ABSTRACTShort peptides are uniquely versatile building blocks for self-assembly. Supramolecular peptide assemblies can be used to construct functional hydrogel biomaterials—an attractive approach for neural tissue engineering. Here, we report a new class of short, five-residue peptides that form hydrogels with nanofiber structures. Using rheology and spectroscopy, we describe how sequence variations, pH, and peptide concentration alter the mechanical properties of our pentapeptide hydrogels. We find that this class of seven unmodified peptides forms robust hydrogels from 0.2–20 kPa at low weight percent (less than 3 wt. %) in cell culture media, and undergoes shear-thinning and rapid self-healing. The peptides self-assemble into long fibrils with sequence-dependent fibrillar morphologies. These fibrils exhibit a unique twisted ribbon shape, as visualized by TEM and Cryo-EM imaging, with diameters in the low tens of nanometers and periodicities similar to amyloid fibrils. Experimental gelation behavior corroborates our molecular dynamics simulations, which demonstrate peptide assembly behavior, an increase in β-sheet content, and patterns of variation in solvent accessibility. Our Rapidly Assembling Pentapeptides for Injectable Delivery (RAPID) hydrogels are syringe-injectable and support cytocompatible encapsulation of oligodendrocyte progenitor cells (OPCs), as well as their proliferation and three-dimensional process extension. Furthermore, RAPID gels protect OPCs from mechanical membrane disruption and acute loss of viability when ejected from a syringe needle, highlighting the protective capability of the hydrogel as potential cell carriers for trans-plantation therapies. The tunable mechanical and structural properties of these supramolecular assemblies are shown to be permissive to cell expansion and remodeling, making this hydrogel system suitable as an injectable material for cell delivery and tissue engineering applications.


1997 ◽  
Vol 488 ◽  
Author(s):  
DeQuan Li ◽  
M. Lütt ◽  
Xiaobo Shi ◽  
M. R. Fitzsimmons

AbstractThe layer-by-layer growth of film structures consisting of sequential depositions of oppositely charged polymers and macrocycles (ring-shaped molecules) have been constructed using molecular self-assembly techniques. These self-assembled thin films were characterized with X-ray reflectometry, which yielded (1) the average electron density, (2) the average thicknesses, and (3) the roughness of the growth surface of the self-assembled multilayer of macrocycles and polymers. These observations suggest that inorganic-organic interactions play an important role during the initial stages of thin-film growth, but less so as the thin film becomes thicker. Optical absorption techniques were also used to characterize the self-assembled multilayers. Phorphyrin and phthalocyanine derivatives were chosen as the building blocks of the self-assembled multilayers because of their interesting optical properties.


2012 ◽  
Vol 40 (4) ◽  
pp. 629-634 ◽  
Author(s):  
Tibor Doles ◽  
Sabina Božič ◽  
Helena Gradišar ◽  
Roman Jerala

Bionanotechnology seeks to modify and design new biopolymers and their applications and uses biological systems as cell factories for the production of nanomaterials. Molecular self-assembly as the main organizing principle of biological systems is also the driving force for the assembly of artificial bionanomaterials. Protein domains and peptides are particularly attractive as building blocks because of their ability to form complex three-dimensional assemblies from a combination of at least two oligomerization domains that have the oligomerization state of at least two and three respectively. In the present paper, we review the application of polypeptide-based material for the formation of material with nanometre-scale pores that can be used for the separation. Use of antiparallel coiled-coil dimerization domains introduces the possibility of modulation of pore size and chemical properties. Assembly or disassembly of bionanomaterials can be regulated by an external signal as demonstrated by the coumermycin-induced dimerization of the gyrase B domain which triggers the formation of polypeptide assembly.


2005 ◽  
Vol 901 ◽  
Author(s):  
Stephen Berkebile ◽  
Georg Koller ◽  
Gregor Hlawacek ◽  
Martin Oehzelt ◽  
Roland Resel ◽  
...  

AbstractThe molecular/crystal orientation and morphology of active molecular structures is a key determinant for the function of nanoscaled organic devices. In π-conjugated systems, both charge transport and optical properties will strongly depend on the molecular orientation due to the highly anisotropic charge carrier mobility in these organic crystals and the anisotropic absorption and luminescence behavior of the molecules. Although the importance of organic on inorganic interface formation and thin film growth is widely acknowledged, little is known regarding the growth kinetics. A better understanding of the processes driving molecular self-assembly is necessary if the self-assembly process is to be controlled. Moreover, it is interesting as the anisotropy of the molecular building blocks presents a fundamental difference from what is known from inorganic growth. Here we show that either sticking or diffusion anisotropy can control the growth depending on preparation conditions. This is illustrated by an investigation into the growth of sexiphenyl (6P) on the anisotropic TiO2(110)-(1×1) surface for temperatures between 80K and 400K using in-situ UHV photoemission, x-ray absorption spectroscopy, synchrotron x-ray diffraction and ex-situ atomic force microscopy. For 6P adsorption even at 80K we found that the molecules orient parallel to the TiO2 oxygen rows and form small crystallites. At 300K this molecular orientation is retained and large micrometer sized 6P(203) oriented needles running perpendicular to oxygen substrate rows are formed. In contrast, for growth at elevated temperatures the 6P molecular axis is near perpendicular to the surface and large islands elongated parallel to the substrate rows are formed. These differences in crystallite orientation and morphology can be explained by the domination of the growth kinetics by either sticking or diffusion anisotropy depending on growth temperature.


Sign in / Sign up

Export Citation Format

Share Document