Native Cadmium-Metallothionein from the Yeast Saccharomyces cerevisiae: Its Primary Structure and Function in Heavy-Metal Resistance

1999 ◽  
Vol 181 (22) ◽  
pp. 6876-6881 ◽  
Author(s):  
Andreas Anton ◽  
Cornelia Große ◽  
Jana Reißmann ◽  
Thomas Pribyl ◽  
Dietrich H. Nies

ABSTRACT The Czc system of Ralstonia sp. strain CH34 mediates resistance to cobalt, zinc, and cadmium through ion efflux catalyzed by the CzcCB2A cation-proton antiporter. The CzcD protein is involved in the regulation of the Czc system. It is a membrane-bound protein with at least four transmembrane α-helices and is a member of a subfamily of the cation diffusion facilitator (CDF) protein family, which occurs in all three domains of life. The deletion ofczcD in a Ralstonia sp. led to partially constitutive expression of the Czc system due to an increased transcription of the structural czcCBA genes, both in the absence and presence of inducers. The czcD deletion could be fully complemented in trans by CzcD and two other CDF proteins from Saccharomyces cerevisiae, ZRC1p and COT1p. All three proteins mediated a small but significant resistance to cobalt, zinc, and cadmium in Ralstonia, and this resistance was based on a reduced accumulation of the cations. Thus, CzcD appeared to repress the Czc system by an export of the inducing cations.


Author(s):  
Kashaf Junaid ◽  
Hasan Ejaz ◽  
Iram Asim ◽  
Sonia Younas ◽  
Humaira Yasmeen ◽  
...  

This study evaluates bacteriological profiles in ready-to-eat (RTE) foods and assesses antibiotic resistance, extended-spectrum β-lactamase (ESBL) production by gram-negative bacteria, and heavy metal tolerance. In total, 436 retail food samples were collected and cultured. The isolates were screened for ESBL production and molecular detection of ESBL-encoding genes. Furthermore, all isolates were evaluated for heavy metal tolerance. From 352 culture-positive samples, 406 g-negative bacteria were identified. Raw food samples were more often contaminated than refined food (84.71% vs. 76.32%). The predominant isolates were Klebsiella pneumoniae (n = 76), Enterobacter cloacae (n = 58), and Escherichia coli (n = 56). Overall, the percentage of ESBL producers was higher in raw food samples, although higher occurrences of ESBL-producing E. coli (p = 0.01) and Pseudomonas aeruginosa (p = 0.02) were observed in processed food samples. However, the prevalence of ESBL-producing Citrobacter freundii in raw food samples was high (p = 0.03). Among the isolates, 55% were blaCTX-M, 26% were blaSHV, and 19% were blaTEM. Notably, heavy metal resistance was highly prevalent in ESBL producers. These findings demonstrate that retail food samples are exposed to contaminants including antibiotics and heavy metals, endangering consumers.


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 553-562
Author(s):  
Margaret I Kanipes ◽  
John E Hill ◽  
Susan A Henry

Abstract The isolation of mutants of Schizosaccharomyces pombe defective in the synthesis of phosphatidylcholine via the methylation of phosphatidylethanolamine is reported. These mutants are choline auxotrophs and fall into two unlinked complementation groups, cho1 and cho2. We also report the analysis of the cho1+ gene, the first structural gene encoding a phospholipid biosynthetic enzyme from S. pombe to be cloned and characterized. The cho1+ gene disruption mutant (cho1Δ) is viable if choline is supplied and resembles the cho1 mutants isolated after mutagenesis. Sequence analysis of the cho1+ gene indicates that it encodes a protein closely related to phospholipid methyltransferases from Saccharomyces cerevisiae and rat. Phospholipid methyltransferases encoded by a rat liver cDNA and the S. cerevisiae OPI3 gene are both able to complement the choline auxotrophy of the S. pombe cho1 mutants. These results suggest that both the structure and function of the phospholipid N-methyltransferases are broadly conserved among eukaryotic organisms.


2021 ◽  
Vol 9 (3) ◽  
pp. 499
Author(s):  
Majid Rasool Kamli ◽  
Nada A. Y. Alzahrani ◽  
Nahid H. Hajrah ◽  
Jamal S. M. Sabir ◽  
Adeel Malik

Bacteria belonging to the genus Aneurinibacillus within the family Paenibacillaceae are Gram-positive, endospore-forming, and rod-shaped bacteria inhabiting diverse environments. Currently, there are eight validly described species of Aneurinibacillus; however, several unclassified species have also been reported. Aneurinibacillus spp. have shown the potential for producing secondary metabolites (SMs) and demonstrated diverse types of enzyme activities. These features make them promising candidates with industrial implications. At present, genomes of 9 unique species from the genus Aneurinibacillus are available, which can be utilized to decipher invaluable information on their biosynthetic potential as well as enzyme activities. In this work, we performed the comparative genome analyses of nine Aneurinibacillus species representing the first such comprehensive study of this genus at the genome level. We focused on discovering the biosynthetic, biodegradation, and heavy metal resistance potential of this under-investigated genus. The results indicate that the genomes of Aneurinibacillus contain SM-producing regions with diverse bioactivities, including antimicrobial and antiviral activities. Several carbohydrate-active enzymes (CAZymes) and genes involved in heavy metal resistance were also identified. Additionally, a broad range of enzyme classes were also identified in the Aneurinibacillus pan-genomes, making this group of bacteria potential candidates for future investigations with industrial applications.


1995 ◽  
Vol 18 (3) ◽  
pp. 191-203 ◽  
Author(s):  
Eva M. Top ◽  
Helene Rore ◽  
Jean-Marc Collard ◽  
Veerle Gellens ◽  
Galina Slobodkina ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Manzar Alam ◽  
Mohd Imran ◽  
Syed Sayeed Ahmad

Background: Microbial resistance to antibiotics and heavy metals is a rising problem in the world today. All the Proteus vulgaris isolates showed their MIC in between 50-1600 µg/ml. Of 70% and 46% of the isolates showed their MIC at 800-1200 µg/ml against Zn2+ and Cu2+ while 80% of the isolates showed their MIC at 100-200 µg/ml against Ni2+, respectively. All Proteus vulgaris isolates also exhibited multiple resistance patterns (2-7 heavy metals) in different combination of metals. The Multi metal resistance Index (MHMR) ranges were found (0.04-0.5). Methods: A high level of antibiotics resistance was observed against Methicillin (100%) and least to Oflaxicin (6%), Gentamycine and Neomycin (10%). All Proteus vulgaris isolates also showed multiple drug resistance patterns (2-12 antibiotics) in different combination of antibiotics. The MAR index ranges were found (0.02-0.7). Of 98%, 84% and 80% of the total isolates showed urease, gelatinase and amylase activity. Results: The Proteus vulgaris isolates contained plasmid of size ranging from 42.5 to 57.0kb and molecular weight of plasmids ranged from 27.2 to 37.0 MD. Incidences of resistance transfer, 7 pairs of isolates were assessed for the transfer of the antibiotic/ heavy metal resistance markers. The higher (4.4x10-1 and 3.4x10-1) transfer frequency was observed among antibiotic and heavy metal while lower transfer frequency were (5.0x10-2 and 1.0x10-2) showed against antibiotic and heavy metal in both the medium from the entire site tested, respectively. Conclusion: Indicating the high threat of environmental pollution and appearance of heavy metal resistance which may support the enlargement of resistance to antibiotics among the pathogens.


Sign in / Sign up

Export Citation Format

Share Document