Photo- and X Ray Luminescence of the Impurity Cadmium Tungstate Monocrystals: Influence of Gamma Irradiation

1996 ◽  
Vol 65 (1) ◽  
pp. 143-146 ◽  
Author(s):  
S. Nedelko ◽  
O. Apanasenko ◽  
M. Bilyi ◽  
M. Krisjuk ◽  
L. Limarenko ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed S. Yahia ◽  
Ahmed S. Elzaref ◽  
Magdy B. Awad ◽  
Ahmed M. Tony ◽  
Ahmed S. Elfeky

Abstract Commercial Granulated Active Carbon (GAC) has been modified using 10 Gy dose Gamma irradiation (GAC10 Gy) for increasing its ability of air purification. Both, the raw and treated samples were applied for removing Chlorpyrifos pesticide (CPF) from ambient midair. Physicochemical properties of the two materials were characterized by Fourier Transform Infrared (FT-IR) and Raman spectroscopy. The phase formation and microstructure were monitored using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), supported with Energy-Dispersive X-ray (EDX). The Surface area measurement was detected using BET particle size prosometry. Obtained outcomes showed that, the maximum adsorption capacity, given by Langmuir equations, was greatly increased from 172.712 to 272.480 mg/g for GAC and GAC10 Gy, respectively, with high selectivity. The overall removal efficiency of GAC10 Gy was notably comparable to that of the original GAC-sorbent. The present study indicated that, gamma irradiation could be a promising technique for treating GAC and turned it more active in eliminating the pesticides pollutants from surrounding air. The data of equilibrium has been analyzed by Langmuir and Freundlich models, that were considerably better suited for the investigated materials than other models. The process kinetics of CPF adsorbed onto both tested carbon versions were found to obey the pseudo first order at all concentrations with an exception at 70 mg/l using GAC, where, the spontaneous exothermic adsorption of Chlorpyrifos is a strong function for the pseudo-first order (PFO) and pseudo second order (PSO) kinetics.


1981 ◽  
Vol 6 ◽  
Author(s):  
V. I. Spitsyn ◽  
A. A. Minaev ◽  
L. I. Barsova ◽  
P. Ya. Glazunov ◽  
V. N. Vetchkanov

ABSTRACTThis work is one of the first attempts to work out a proper technique for the determination of the diffusion of the phosphate glass components into various rocks by using X-ray microanalysis. Under study was thermal and radiationenhanced diffusion of phosphorus, chromium from phosphate glasses into the samples of basalt, metagabbro, metadunite and quartz at high temperatures (to 600°) during gamma irradiation. Radiation enhanced diffusion of ions into rocks.


Silicon ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 2499-2504 ◽  
Author(s):  
M. N. Mirzayev ◽  
S. H. Jabarov ◽  
E. B. Asgerov ◽  
R. N. Mehdiyeva ◽  
T. T. Thabethe ◽  
...  

2008 ◽  
Vol 43 (2-6) ◽  
pp. 227-230 ◽  
Author(s):  
L.O. Arantes ◽  
R.B. Ferreira ◽  
R.P.M. Carvalhaes ◽  
A.R. Blak

2017 ◽  
Vol 898 ◽  
pp. 2224-2230
Author(s):  
Ying Liang ◽  
Bin Fang ◽  
Fang Fang Lin ◽  
Xu Min Zhu

Ag/rGO composites were synthesized under gamma irradiation using silver nitrate and graphene oxide (GO) as the starting materials. Comparing with traditional methods, gamma irradiation is a simple and “green” technique. In the irradiation system, silver ions were reduced to silver nanoparticles (AgNPs) by the electrons generated from the radiolysis of solvent. GO nanosheets provided reactive sites for the formation of AgNPs and acted as a colloidal surfactant preventing the aggregation of AgNPs. Meanwhile, GO were partially reduced to reduced graphene oxide (rGO). X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, Raman spectra and UV-Vis absorption spectra were applied for the characterization of Ag/rGO composites. The results showed that the absorbed dose (3.1 kGy, 4.7 kGy, 9.4 kGy and 27.4 kGy) plays an important role in the size distribution of AgNPs and the reduction degree of GO nanosheetes. The Ag/rGO composites exhibit a broad absorption band at visible light due to the surface plasmon resonance of AgNPs. Because of the unique surface properties, Ag/rGO composites behave enhanced performance for the adsorption of organic dye from water.


2019 ◽  
Vol 26 (5) ◽  
pp. 1797-1807 ◽  
Author(s):  
A. K. Agrawal ◽  
B. Singh ◽  
Y. S. Kashyap ◽  
M. Shukla ◽  
B. S. Manjunath ◽  
...  

Flame-retardant polyurethane foams are potential packing materials for the transport casks of highly active nuclear materials for shock absorption and insulation purposes. Exposure of high doses of gamma radiation causes cross-linking and chain sectioning of macromolecules in this polymer foam, which leads to reorganization of their cellular microstructure and thereby variations in physico-mechanical properties. In this study, in-house-developed flame-retardant rigid polyurethane foam samples were exposed to gamma irradiation doses in the 0–20 kGy range and synchrotron radiation X-ray micro-computed tomography (SR-µCT) imaging was employed for the analysis of radiation-induced morphological variations in their cellular microstructure. Qualitative and quantitative analysis of SR-µCT images has revealed significant variations in the average cell size, shape, wall thickness, orientations and spatial anisotropy of the cellular microstructure in polyurethane foam.


2020 ◽  
Vol 113 (4) ◽  
pp. 1685-1693 ◽  
Author(s):  
Ronald Haff ◽  
Inna Ovchinnikova ◽  
Peishih Liang ◽  
Noreen Mahoney ◽  
Wai Gee ◽  
...  

Abstract The suitability of adult male the navel orangeworm, Amyelois transitella (Walker) for Sterile Insect Technique (SIT) has been reported for both high energy gamma (>1 MeV) and low energy x-ray (90 keV) sterilization. However, research regarding sterilization of NOW larvae and pupae by gamma irradiation indicated nonsuitability due to high mortality. Here, NOW larvae and pupae were irradiated to doses up to 50 Gy with 90 keV x-rays, then paired with nonirradiated colony mates. Sterility of surviving insects was determined by the presence or absence of hatched neonates. While presence of offspring does not guarantee viability, the absence does guarantee sterility (as is appropriate for SIT) and was thus the measure used here. Early stage larvae experienced 77% mortality at a dose of 30 Gy, versus 20% for nonirradiated control. At 40 Gy, mortality reached 98%. Of surviving early stage larvae at 30 Gy, 29% of moth pairs produced offspring. For late stage larvae, no offspring were produced at 40 Gy, but mortality was 73%. For pupae, mortality reached 53% at 30 Gy with 13% still producing neonates, while mortality reached 98% at 40 Gy. These results are consistent with reported results for gamma irradiation of NOW larvae where sterility was observed somewhere between the 30 Gy and 60 Gy data points, but mortality was high. This further confirms the lack of suitability of NOW irradiated in the larval stage, whether by gamma or x-ray, and supports the hypothesis that x-ray and gamma treatments are biologically equivalent at equal doses.


Vox Sanguinis ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 215-219 ◽  
Author(s):  
K. Janatpour ◽  
L. Denning ◽  
K. Nelson ◽  
B. Betlach ◽  
M. MacKenzie ◽  
...  
Keyword(s):  

2016 ◽  
Vol 23 (6) ◽  
pp. 1424-1432 ◽  
Author(s):  
V. N. Rai ◽  
Parasmani Rajput ◽  
S. N. Jha ◽  
D. Bhattacharyya ◽  
B. N. Raja Shekhar ◽  
...  

X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) of Nd-doped phosphate glasses have been studied before and after gamma irradiation. The intensity and the location of the white line peak of theL3-edge XANES of Nd are found to be dependent on the ratio O/Nd in the glass matrix. Gamma irradiation changes the elemental concentration of atoms in the glass matrix, which affects the peak intensity of the white line due to changes in the covalence of the chemical bonds with Nd atoms in the glass (structural changes). Sharpening of the Nd 3d5/2peak profile in XPS spectra indicates a deficiency of oxygen in the glasses after gamma irradiation, which is supported by energy-dispersive X-ray spectroscopy measurements. The ratio of non-bridging oxygen to total oxygen in the glass after gamma radiation has been found to be correlated to the concentration of defects in the glass samples, which are responsible for its radiation resistance as well as for its coloration.


Sign in / Sign up

Export Citation Format

Share Document