scholarly journals Numerical simulation of solar photospheric jet-like phenomena caused by magnetic reconnection

2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Yuji Kotani ◽  
Kazunari Shibata

Abstract Jet phenomena with a bright loop in their footpoint, called anemone jets, have been observed in the solar corona and chromosphere. These jets are formed as a consequence of magnetic reconnection, and from the scale universality of magnetohydrodynamics (MHD), it can be expected that anemone jets exist even in the solar photosphere. However, it is not necessarily apparent that jets can be generated as a result of magnetic reconnection in the photosphere, where the magnetic energy is not dominant. Furthermore, MHD waves generated from photospheric jets could contribute to chromospheric heating and spicule formation; however, this hypothesis has not yet been thoroughly investigated. In this study, we perform three-dimensional MHD simulation including gravity with the solar photospheric parameter to investigate anemone jets in the solar photosphere. In the simulation, jet-like structures were induced by magnetic reconnection in the solar photosphere. We determined that these jet-like structures were caused by slow shocks formed by the reconnection and were propagated approximately in the direction of the background magnetic field. We also suggested that MHD waves from the jet-like structures could influence local atmospheric heating and spicule formation.

2012 ◽  
Vol 8 (S294) ◽  
pp. 107-118 ◽  
Author(s):  
Nataliya G. Shchukina ◽  
Javier Trujillo Bueno

AbstractA few years before the Hinode space telescope was launched, an investigation based on the Hanle effect in atomic and molecular lines indicated that the bulk of the quiet solar photosphere is significantly magnetized, due to the ubiquitous presence of an unresolved magnetic field with an average strength 〈B〉, ≈ 130 G. It was pointed out also that this “hidden” field must be much stronger in the intergranular regions of solar surface convection than in the granular regions, and it was suggested that this unresolved magnetic field could perhaps provide the clue for understanding how the outer solar atmosphere is energized. In fact, the ensuing magnetic energy density is so significant that the energy flux estimated using the typical value of 1 km/s for the convective velocity (thinking in rising magnetic loops) or the Alfvén speed (thinking in Alfvén waves generated by magnetic reconnection) turns out to be substantially larger than that required to balance the chromospheric energy losses. Here we present a brief review of the research that led to such conclusions, with emphasis on a new three-dimensional radiative transfer investigation aimed at determining the magnetization of the quiet Sun photosphere from the Hanle effect in the Sr I 4607 Å line and the Zeeman effect in Fe I lines.


Author(s):  
Pallavi Bhat ◽  
Muni Zhou ◽  
Nuno F Loureiro

Abstract It has been recently shown numerically that there exists an inverse transfer of magnetic energy in decaying, nonhelical, magnetically dominated, magnetohydrodynamic turbulence in 3-dimensions (3D). We suggest that magnetic reconnection is the underlying physical mechanism responsible for this inverse transfer. In the two-dimensional (2D) case, the inverse transfer is easily inferred to be due to smaller magnetic islands merging to form larger ones via reconnection. We find that the scaling behaviour is similar between the 2D and the 3D cases, i.e., the magnetic energy evolves as t−1, and the magnetic power spectrum follows a slope of k−2. We show that on normalizing time by the magnetic reconnection timescale, the evolution curves of the magnetic field in systems with different Lundquist numbers collapse onto one another. Furthermore, transfer function plots show signatures of magnetic reconnection driving the inverse transfer. We also discuss the conserved quantities in the system and show that the behaviour of these quantities is similar between the 2D and 3D simulations, thus making the case that the dynamics in 3D could be approximately explained by what we understand in 2D. Lastly, we also conduct simulations where the magnetic field is subdominant to the flow. Here, too, we find an inverse transfer of magnetic energy in 3D. In these simulations, the magnetic energy evolves as t−1.4 and, interestingly, a dynamo effect is observed.


2021 ◽  
Author(s):  
Felix Gerick ◽  
Dominique Jault ◽  
Jerome Noir

<p> Fast changes of Earth's magnetic field could be explained by inviscid and diffusion-less quasi-geostrophic (QG) Magneto-Coriolis modes. We present a hybrid QG model with columnar flows and three-dimensional magnetic fields and find modes with periods of a few years at parameters relevant to Earth's core. These fast Magneto-Coriolis modes show strong focusing of their kinetic and magnetic energy in the equatorial region, while maintaining a relatively large spatial structure along the azimuthal direction. Their properties agree with some of the observations and inferred core flows. We find additionally, in contrast to what has been assumed previously, that these modes are not affected significantly by magnetic diffusion. The model opens a new way of inverting geomagnetic observations to the flow and magnetic field deep within the Earth's outer core.</p>


2021 ◽  
Author(s):  
Yann Pfau-Kempf ◽  
Minna Palmroth ◽  
Andreas Johlander ◽  
Lucile Turc ◽  
Markku Alho ◽  
...  

<p>Dayside magnetic reconnection at the magnetopause, which is a major driver of space weather, is studied for the first time in a three-dimensional (3D) realistic setup using the Vlasiator hybrid-Vlasov kinetic model. A noon–midnight meridional plane simulation is extended in the dawn–dusk direction to cover 7 Earth radii. The southward interplanetary magnetic field causes magnetic reconnection to occur at the subsolar magnetopause. Perturbations arising from kinetic instabilities in the magnetosheath appear to modulate the reconnection. Its characteristics are consistent with multiple, bursty, and patchy magnetopause reconnection. It is shown that the kinetic behavior of the plasma, as simulated by the model, has consequences on the applicability of methods such as the four-field junction to identify and analyse magnetic reconnection in 3D kinetic simulations.</p>


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Anastasios Pateras ◽  
Ross Harder ◽  
Sohini Manna ◽  
Boris Kiefer ◽  
Richard L. Sandberg ◽  
...  

Abstract Magnetostriction is the emergence of a mechanical deformation induced by an external magnetic field. The conversion of magnetic energy into mechanical energy via magnetostriction at the nanoscale is the basis of many electromechanical systems such as sensors, transducers, actuators, and energy harvesters. However, cryogenic temperatures and large magnetic fields are often required to drive the magnetostriction in such systems, rendering this approach energetically inefficient and impractical for room-temperature device applications. Here, we report the experimental observation of giant magnetostriction in single-crystal nickel nanowires at room temperature. We determined the average values of the magnetostrictive constants of a Ni nanowire from the shifts of the measured diffraction patterns using the 002 and 111 Bragg reflections. At an applied magnetic field of 600 Oe, the magnetostrictive constants have values of λ100 = −0.161% and λ111 = −0.067%, two orders of magnitude larger than those in bulk nickel. Using Bragg coherent diffraction imaging (BCDI), we obtained the three-dimensional strain distribution inside the Ni nanowire, revealing nucleation of local strain fields at two different values of the external magnetic field. Our analysis indicates that the enhancement of the magnetostriction coefficients is mainly due to the increases in the shape, surface-induced, and stress-induced anisotropies, which facilitate magnetization along the nanowire axis and increase the total magnetoelastic energy of the system.


2009 ◽  
Vol 5 (H15) ◽  
pp. 434-435
Author(s):  
A. Lazarian ◽  
G. Kowal ◽  
E. Vishniac ◽  
K. Kulpa-Dubel ◽  
K. Otmianowska-Mazur

AbstractA magnetic field embedded in a perfectly conducting fluid preserves its topology for all times. Although ionized astrophysical objects, like stars and galactic disks, are almost perfectly conducting, they show indications of changes in topology, magnetic reconnection, on dynamical time scales. Reconnection can be observed directly in the solar corona, but can also be inferred from the existence of large scale dynamo activity inside stellar interiors. Solar flares and gamma ray busts are usually associated with magnetic reconnection. Previous work has concentrated on showing how reconnection can be rapid in plasmas with very small collision rates. Here we present numerical evidence, based on three dimensional simulations, that reconnection in a turbulent fluid occurs at a speed comparable to the rms velocity of the turbulence, regardless of the value of the resistivity. In particular, this is true for turbulent pressures much weaker than the magnetic field pressure so that the magnetic field lines are only slightly bent by the turbulence. These results are consistent with the proposal by Lazarian & Vishniac (1999) that reconnection is controlled by the stochastic diffusion of magnetic field lines, which produces a broad outflow of plasma from the reconnection zone. This work implies that reconnection in a turbulent fluid typically takes place in approximately a single eddy turnover time, with broad implications for dynamo activity and particle acceleration throughout the universe. In contrast, the reconnection in 2D configurations in the presence of turbulence depends on resistivity, i.e. is slow.


2020 ◽  
Author(s):  
Xiaoshuai Zhu ◽  
Thomas Wiegelmann

<div><span><span lang="en-US">Both magnetic field and plasma play important roles in activities in the solar atmosphere. Unfortunately only the magnetic fields in the photosphere are routinely measured precisely. We aim to extrapolate these photospheric </span></span><span><span lang="en-US">vector magnetograms upwards into  the solar atmosphere. In this work </span><span lang="en-US">we are mainly interested in reconstructing the upper solar photosphere </span><span lang="en-US">and chromosphere. In these layers magnetic and non-magnetic forces are equally important. Consequently we have to compute an equilibrium of plasma </span></span><span><span lang="en-US">and magnetic forces with a magnetohydrostatic model. A optimization approach which minimize a functional defined by the magnetohydrostatic equations is used in the model. In this talk/poster, I will present a strict test of the new code with a radiative MHD simulation and its first application to a high resolution vector magnetogram measured by SUNRISE/IMaX.</span></span></div>


2017 ◽  
Vol 83 (1) ◽  
Author(s):  
Miho Janvier

Solar flares are powerful radiations occurring in the Sun’s atmosphere. They are powered by magnetic reconnection, a phenomenon that can convert magnetic energy into other forms of energy such as heat and kinetic energy, and which is believed to be ubiquitous in the universe. With the ever increasing spatial and temporal resolutions of solar observations, as well as numerical simulations benefiting from increasing computer power, we can now probe into the nature and the characteristics of magnetic reconnection in three dimensions to better understand the phenomenon’s consequences during eruptive flares in our star’s atmosphere. We review in the following the efforts made on different fronts to approach the problem of magnetic reconnection. In particular, we will see how understanding the magnetic topology in three dimensions helps in locating the most probable regions for reconnection to occur, how the current layer evolves in three dimensions and how reconnection leads to the formation of flux ropes, plasmoids and flaring loops.


Author(s):  
Kyung Sun Park

We performed high-resolution three-dimensional global MHD simulations to determine the impact of weak southward interplanetary magnetic field (IMF) (Bz = −2 nT) and slow solar wind to the Earth’s magnetosphere and ionosphere. We considered two cases of differing, uniform time resolution with the same grid spacing simulation to find any possible differences in the simulation results. The simulation results show that dayside magnetic reconnection and tail reconnection continuously occur even during the weak and steady southward IMF conditions. A plasmoid is generated on closed plasma sheet field lines. Vortices are formed in the inner side of the magnetopause due to the viscous-like interaction, which is strengthened by dayside magnetic reconnection. We estimated the dayside magnetic reconnection which occurred in relation to the electric field at the magnetopause and confirmed that the enhanced electric field is caused by the reconnection and the twisted structure of the electric field is due to the vortex. The simulation results of the magnetic field and the plasma properties show quasi-periodic variations with a period of 9–11 min between the appearances of vortices. Also the peak values of the cross-polar cap potential are both approximately 50 kV, the occurrence time of dayside reconnections are the same, and the polar cap potential patterns are the same in both cases. Thus, there are no significant differences in outcome between the two cases.


Author(s):  
David I. Pontin

Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this paper, we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex three-dimensional magnetic fields and describe the fundamental differences between reconnection in two and three dimensions. We go on to outline recent developments in modelling of reconnection with kinetic theory, as well as in the magnetohydrodynamic framework where a number of new three-dimensional reconnection regimes have been identified. We discuss evidence from observations and simulations of Solar System plasmas that support this theory and summarize some prominent locations in which this new reconnection theory is relevant in astrophysical plasmas.


Sign in / Sign up

Export Citation Format

Share Document