scholarly journals Digalactosyl-Diacylglycerol Deficiency Impairs the Capacity for Photosynthetic Intersystem Electron Transport and State Transitions in Arabidopsis thaliana Due to Photosystem I Acceptor-Side Limitations

2006 ◽  
Vol 47 (8) ◽  
pp. 1146-1157 ◽  
Author(s):  
Alexander G. Ivanov ◽  
Luke Hendrickson ◽  
Marianna Krol ◽  
Eva Selstam ◽  
Gunnar Öquist ◽  
...  
Nature Plants ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 238-238
Author(s):  
Christopher Hepworth ◽  
William H. J. Wood ◽  
Tom Z. Emrich-Mills ◽  
Matthew S. Proctor ◽  
Stuart Casson ◽  
...  

Author(s):  
Suresh Tula ◽  
Fahimeh Shahinnia ◽  
Michael Melzer ◽  
Twan Rutten ◽  
Rodrigo Gómez ◽  
...  

AbstractThe ability of plants to maintain photosynthesis in a dynamically changing environment is of central importance for their growth. As their photosynthetic machinery typically cannot adapt rapidly to fluctuations in the intensity of radiation, the level of photosynthetic efficiency is not always optimal. Cyanobacteria, algae, non-vascular plants (mosses and liverworts) and gymnosperms all produce flavodiirons (Flvs), a class of proteins not represented in the angiosperms; these proteins act to mitigate the photoinhibition of photosystem I. Here, genes specifying two cyanobacterial Flvs have been expressed in the chloroplasts of Arabidopsis thaliana in an attempt to improve the robustness of Photosystem I (PSI). The expression of Flv1 and Flv3 together shown to enhance the efficiency of the utilization of light and to boost the plant’s capacity to accumulate biomass. Based on an assessment of the chlorophyll fluorescence in the transgenic plants, the implication was that photosynthetic activity (including electron transport flow and non-photochemical quenching during a dark-to-light transition) was initiated earlier in the transgenic than in wild type plants. The improved photosynthetic performance of the transgenics was accompanied by an increased production of ATP, an acceleration of carbohydrate metabolism and a more pronounced partitioning of sucrose into starch. The indications are that Flvs are able to establish an efficient electron sink downstream of PSI, thereby ensuring that the photosynthetic electron transport chain remains in a more oxidized state. The expression of Flvs in a plant acts to both protect photosynthesis and to control the ATP/NADPH ratio; together, their presence is beneficial for the plant’s growth potential.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 230 ◽  
Author(s):  
Chikahiro Miyake

Photosynthesis fixes CO2 and converts it to sugar, using chemical-energy compounds of both NADPH and ATP, which are produced in the photosynthetic electron transport system. The photosynthetic electron transport system absorbs photon energy to drive electron flow from Photosystem II (PSII) to Photosystem I (PSI). That is, both PSII and PSI are full of electrons. O2 is easily reduced to a superoxide radical (O2−) at the reducing side, i.e., the acceptor side, of PSI, which is the main production site of reactive oxygen species (ROS) in photosynthetic organisms. ROS-dependent inactivation of PSI in vivo has been reported, where the electrons are accumulated at the acceptor side of PSI by artificial treatments: exposure to low temperature and repetitive short-pulse (rSP) illumination treatment, and the accumulated electrons flow to O2, producing ROS. Recently, my group found that the redox state of the reaction center of chlorophyll P700 in PSI regulates the production of ROS: P700 oxidation suppresses the production of O2− and prevents PSI inactivation. This is why P700 in PSI is oxidized upon the exposure of photosynthesis organisms to higher light intensity and/or low CO2 conditions, where photosynthesis efficiency decreases. In this study, I introduce a new molecular mechanism for the oxidation of P700 in PSI and suppression of ROS production from the robust relationship between the light and dark reactions of photosynthesis. The accumulated protons in the lumenal space of the thylakoid membrane and the accumulated electrons in the plastoquinone (PQ) pool drive the rate-determining step of the P700 photo-oxidation reduction cycle in PSI from the photo-excited P700 oxidation to the reduction of the oxidized P700, thereby enhancing P700 oxidation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Takako Ogawa ◽  
Kenta Suzuki ◽  
Kintake Sonoike

In cyanobacteria, the photosynthetic prokaryotes, direct interaction between photosynthesis and respiration exists at plastoquinone (PQ) pool, which is shared by the two electron transport chains. Another possible point of intersection of the two electron transport chains is NADPH, which is the major electron donor to the respiratory chain as well as the final product of the photosynthetic chain. Here, we showed that the redox state of NADPH in the dark affected chlorophyll fluorescence induction in the cyanobacterium Synechocystis sp. PCC 6803 in a quantitative manner. Accumulation of the reduced NADPH in the dark due to the defect in type 1 NAD(P)H dehydrogenase complex in the respiratory chain resulted in the faster rise to the peak in the dark-to-light induction of chlorophyll fluorescence, while depletion of NADPH due to the defect in pentose phosphate pathway resulted in the delayed appearance of the initial peak in the induction kinetics. There was a strong correlation between the dark level of NADPH determined by its fluorescence and the peak position of the induction kinetics of chlorophyll fluorescence. These results indicate that photosynthesis interacts with respiration through NADPH, which enable us to monitor the redox condition of the acceptor side of photosystem I by simple measurements of chlorophyll fluorescence induction in cyanobacteria.


1985 ◽  
Vol 40 (5-6) ◽  
pp. 391-399 ◽  
Author(s):  
A. Trebst ◽  
B. Depka ◽  
S. M. Ridley ◽  
A. F. Hawkins

Abstract Herbicidal halogen substituted 4-hydroxypyridines are inhibitors of photosynthetic electron flow in isolated thylakoid membranes by interfering with the acceptor side of photosystem II. Tetrabromo-4-hydroxypyridine, the most active compound found, has a pI50-value of 7.6 in the inhibition of oxygen evolution in both the reduction of an acceptor of photosystem I and an acceptor of photosystem II. The new inhibitors displace both metribuzin and ioxynil from the membrane. The 4-hydroxypyridines, like ioxynil, have unimpaired inhibitor potency in Tristreated chloroplasts, whereas the DCMU-type family of herbicides does not. It is suggested that 4-hydroxypyridines are complementary to phenol-type inhibitors, and a common essential element is proposed. The 4-hydroxypyridines do not inhibit photosystem I or non-cyclic electron flow through the cytochrome b/f complex. But they do have a second inhibition site in photosynthetic electron transport since they inhibit ferredoxin-catalyzed cyclic electron flow, indicating an antimycin-like property. A comparison of the in vitro potency of the compounds with the in vivo potency shows no correlation. A major herbicidal mode of action of the group is related to the inhibition of carotenoid synthesis, and access to the chloroplast lamellae in vivo for inhibition of electron transport may be restricted.


1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

2021 ◽  
Author(s):  
Keiko U Torii

Abstract Background Stomata are adjustable pores on the surface of plant shoots for efficient gas exchange and water control. The presence of stomata is essential for plant growth and survival, and the evolution of stomata is considered as a key developmental innovation of the land plants, allowing colonization on land from aquatic environments some 450 million years ago. In the past two decades, molecular genetic studies using the model plant Arabidopsis thaliana identified key genes and signalling modules that regulate stomatal development: master-regulatory transcription factors that orchestrate cell-state transitions and peptide-receptor signal transduction pathways, which, together, enforce proper patterning of stomata within the epidermis. Studies in diverse plant species, ranging from bryophytes to angiosperm grasses, have begun to unravel the conservation and uniqueness of the core modules in stomatal development. Scope Here, I review the mechanisms of stomatal development in the context of epidermal tissue patterning. First, I introduce the core regulatory mechanisms of stomatal patterning and differentiation in the model species Arabidopsis thaliana. Subsequently, experimental evidence is presented supporting the idea that different cell types within the leaf epidermis, namely stomata, hydathodes pores, pavement cells, and trichomes, either share developmental origins or mutually influence each other’s gene regulatory circuits during development. Emphasis is taken on extrinsic and intrinsic signals regulating the balance between stomata and pavement cells, specifically by controlling the fate of Stomatal-Lineage Ground Cells (SLGCs) to remain within the stomatal-cell lineage or differentiate into pavement cells. Finally, I discuss the influence of inter-tissue-layer communication between the epidermis and underlying mesophyll/vascular tissues on stomatal differentiation. Understanding the dynamic behaviors of stomatal precursor cells and their differentiation in the broader context of tissue and organ development may help design plants tailored for optimal growth and productivity in specific agricultural applications and a changing environment.


1980 ◽  
Vol 35 (9-10) ◽  
pp. 770-775 ◽  
Author(s):  
E. F. Elstner ◽  
H. P. Fischer ◽  
W. Osswald ◽  
G. Kwiatkowski

Abstract Oxygen reduction by chloroplast lamellae is catalyzed by low potential redox dyes with E′0 values between -0 .3 8 V and -0 .6 V. Compounds of E′0 values of -0 .6 7 V and lower are inactive. In subchloroplast particles with an active photosystem I but devoid of photosynthetic electron transport between the two photosystems, the active redox compounds enhance chlorophyll bleaching, superoxide formation and ethane production independent on exogenous substrates or electron donors. The activities of these compounds decrease with decreasing redox potential, with one exception: 1-methyl-4,4′-bipyridini urn bromide with an E′0 value of lower -1 V (and thus no electron acceptor of photosystem I in chloroplast lamellae with intact electron transport) stimulates light dependent superoxide formation and unsaturated fatty acid peroxidation in sub­ chloroplast particles, maximal rates appearing after almost complete chlorophyll bleaching. Since this activity is not visible with compounds with redox potentials below -0 .6 V lacking the nitrogen atom at the 1-position of the pyridinium substituent, we assume that 1 -methyl-4,4′-bi-pyridinium bromide is “activated” by a yet unknown light reaction.


Sign in / Sign up

Export Citation Format

Share Document