Biological Function of Changes in RNA Metabolism in Plant Adaptation to Abiotic Stress

2019 ◽  
Vol 60 (9) ◽  
pp. 1897-1905 ◽  
Author(s):  
Akihiro Matsui ◽  
Kentaro Nakaminami ◽  
Motoaki Seki

Abstract Plant growth and productivity are greatly impacted by environmental stresses. Therefore, plants have evolved various sophisticated mechanisms for adaptation to nonoptimal environments. Recent studies using RNA metabolism-related mutants have revealed that RNA processing, RNA decay and RNA stability play an important role in regulating gene expression at a post-transcriptional level in response to abiotic stresses. Studies indicate that RNA metabolism is a unified network, and modification of stress adaptation-related transcripts at multiple steps of RNA metabolism is necessary to control abiotic stress-related gene expression. Recent studies have also demonstrated the important role of noncoding RNAs (ncRNAs) in regulating abiotic stress-related gene expression and revealed their involvement in various biological functions through their regulation of DNA methylation, DNA structural modifications, histone modifications and RNA–RNA interactions. ncRNAs regulate mRNA transcription and their synthesis is affected by mRNA processing and degradation. In the present review, recent findings pertaining to the role of the metabolic regulation of mRNAs and ncRNAs in abiotic stress adaptation are summarized and discussed.

2013 ◽  
Vol 54 ◽  
pp. 79-90 ◽  
Author(s):  
Saba Valadkhan ◽  
Lalith S. Gunawardane

Eukaryotic cells contain small, highly abundant, nuclear-localized non-coding RNAs [snRNAs (small nuclear RNAs)] which play important roles in splicing of introns from primary genomic transcripts. Through a combination of RNA–RNA and RNA–protein interactions, two of the snRNPs, U1 and U2, recognize the splice sites and the branch site of introns. A complex remodelling of RNA–RNA and protein-based interactions follows, resulting in the assembly of catalytically competent spliceosomes, in which the snRNAs and their bound proteins play central roles. This process involves formation of extensive base-pairing interactions between U2 and U6, U6 and the 5′ splice site, and U5 and the exonic sequences immediately adjacent to the 5′ and 3′ splice sites. Thus RNA–RNA interactions involving U2, U5 and U6 help position the reacting groups of the first and second steps of splicing. In addition, U6 is also thought to participate in formation of the spliceosomal active site. Furthermore, emerging evidence suggests additional roles for snRNAs in regulation of various aspects of RNA biogenesis, from transcription to polyadenylation and RNA stability. These snRNP-mediated regulatory roles probably serve to ensure the co-ordination of the different processes involved in biogenesis of RNAs and point to the central importance of snRNAs in eukaryotic gene expression.


Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 757-760 ◽  
Author(s):  
Ronald A. Butow ◽  
Hong Zhu ◽  
Philip Perlman ◽  
Heather Conrad-Webb

All mRNAs on the yeast mitochondrial genome terminate at a conserved dodecamer sequence 5′-AAUAAUAUUCUU-3′. We have characterized two mutants with altered dodecamers. One contains a deletion of the dodecamer at the end of the var1 gene, and the other contains two adjacent transversions in the dodecamer at the end of the reading frame of fit1, a gene within the ω+ allele of the 21S rRNA gene. In each mutant, expression of the respective gene is blocked completely. A dominant nuclear suppressor, SUV3-1, was isolated that suppresses the var1 deletion but is without effect on the fit1 dodecamer mutations. Unexpectedly, however, we found that SUV3-1 blocks expression of the wild-type fit1 allele by blocking processing at its dodecamer. SUV3-1 has pleiotropic effects on mitochondrial gene expression, affecting RNA processing, RNA stability, and translation. Our results suggest that RNA metabolism and translation may be part of a multicomponent complex within mitochondria.Key words: mitochondria, yeast, mRNA, RNA processing, 3′ dodecamer.


2006 ◽  
Vol 37 (2) ◽  
pp. 341-352 ◽  
Author(s):  
Takanobu Sato ◽  
Kousuke Kitahara ◽  
Takao Susa ◽  
Takako Kato ◽  
Yukio Kato

Recently, we have reported that a Prophet of Pit-1 homeodomain factor, Prop-1, is a novel transcription factor for the porcine follicle-stimulating hormone β subunit (FSHβ) gene. This study subsequently aimed to examine the role of Prop-1 in the gene expression of two other porcine gonadotropin subunits, pituitary glycoprotein hormone α subunit (αGSU), and luteinizing hormone β subunit (LHβ). A series of deletion mutants of the porcine αGSU (up to −1059 bp) and LHβ (up to −1277 bp) promoters were constructed in the reporter vector, fused with the secreted alkaline phosphatase gene (pSEAP2-Basic). Transient transfection studies using GH3 cells were carried out to estimate the activation of the porcine αGSU and LHβ promoters by Prop-1, which was found to activate the αGSU promoter of −1059/+12 bp up to 11.7-fold but not the LHβ promoter. Electrophoretic mobility shift assay and DNase I footprinting analysis revealed that Prop-1 binds to six positions, −1038/−1026, −942/−928, −495/−479, −338/−326, −153/−146, and −131/−124 bp, that comprise the A/T cluster. Oligonucleotides of six Prop-1 binding sites were directly connected to the minimum promoter of αGSU, fused in the pSEAP2-Basic vector, followed by transfecting GH3 cells to determine the cis-acting activity. Finally, we concluded that at least five Prop-1 binding sites are the cis-acting elements for αGSU gene expression. The present results revealed a notable feature of the proximal region, where three Prop-1-binding sites are close to and/or overlap the pituitary glycoprotein hormone basal element, GATA-binding element, and junctional regulatory element. To our knowledge, this is the first demonstration of the role of Prop-1 in the regulation of αGSU gene expression. These results, taken together with our previous finding that Prop-1 is a transcription factor for FSHβ gene, confirm that Prop-1 modulates the synthesis of FSH at the transcriptional level. On the other hand, the defects of Prop-1 are known to cause dwarfism and combined pituitary hormone deficiency accompanying hypogonadism. Accordingly, the present observations provide a novel view to understand the hypogonadism caused by Prop-1 defects at the molecular level through the regulatory mechanism of αGSU and FSHβ gene expressions.


2014 ◽  
Vol 27 (1) ◽  
pp. 94-106 ◽  
Author(s):  
Emma L. Beckett ◽  
Zoe Yates ◽  
Martin Veysey ◽  
Konsta Duesing ◽  
Mark Lucock

A growing number of studies in recent years have highlighted the importance of molecular nutrition as a potential determinant of health and disease. In particular, the ability of micronutrients to regulate the final expression of gene products via modulation of transcription and translation is now being recognised. Modulation of microRNA (miRNA) by nutrients is one pathway by which nutrition may mediate gene expression. miRNA, a class of non-coding RNA, can directly regulate gene expression post-transcriptionally. In addition, miRNA are able to indirectly influence gene expression potential at the transcriptional level via modulation of the function of components of the epigenetic machinery (DNA methylation and histone modifications). These mechanisms interact to form a complex, bi-directional regulatory circuit modulating gene expression. Disease-specific miRNA profiles have been identified in multiple disease states, including those with known dietary risk factors. Therefore, the role that nutritional components, in particular, vitamins and minerals, play in the modulation of miRNA profiles, and consequently health and disease, is increasingly being investigated, and as such is a timely subject for review. The recently posited potential for viable exogenous miRNA to enter human blood circulation from food sources adds another interesting dimension to the potential for dietary miRNA to contribute to gene modulation.


2009 ◽  
Vol 30 (2) ◽  
pp. 366-371 ◽  
Author(s):  
Gianluca Tell ◽  
David M. Wilson ◽  
Chow H. Lee

ABSTRACT Apurinic/apyrimidinic endonuclease 1 (APE1), an essential protein in mammals, is known to be involved in base excision DNA repair, acting as the major abasic endonuclease; the protein also functions as a redox coactivator of several transcription factors that regulate gene expression. Recent findings highlight a novel role for APE1 in RNA metabolism. The new findings are as follows: (i) APE1 interacts with rRNA and ribosome processing protein NPM1 within the nucleolus; (ii) APE1 interacts with proteins involved in ribosome assembly (i.e., RLA0, RSSA) and RNA maturation (i.e., PRP19, MEP50) within the cytoplasm; (iii) APE1 cleaves abasic RNA; and (iv) APE1 cleaves a specific coding region of c-myc mRNA in vitro and influences c-myc mRNA level and half-life in cells. Such findings on the role of APE1 in the posttranscriptional control of gene expression could explain its ability to influence diverse biological processes and its relocalization to cytoplasmic compartments in some tissues and tumors. In addition, we propose that APE1 serves as a “cleansing” factor for oxidatively damaged abasic RNA, establishing a novel connection between DNA and RNA surveillance mechanisms. In this review, we introduce questions and speculations concerning the role of APE1 in RNA metabolism and discuss the implications of these findings in a broader evolutionary context.


2010 ◽  
Vol 38 (1) ◽  
pp. 217-222 ◽  
Author(s):  
Ini-Isabée Witzel ◽  
Li Fang Koh ◽  
Neil D. Perkins

Cyclin D1 is a key regulator of cell proliferation and its expression is subject to both transcriptional and post-transcriptional regulation. In different cellular contexts, different pathways assume a dominant role in regulating its expression, whereas their disregulation can contribute to overexpression of cyclin D1 in tumorigenesis. Here, we discuss the ability of the NF-κB (nuclear factor κB)/IKK [IκB (inhibitor of NF-κB) kinase] pathways to regulate cyclin D1 gene transcription and also consider the newly discovered role of the SNARP (SNIP1/SkIP-associated RNA processing) complex as a co-transcriptional regulator of cyclin D1 RNA stability.


Author(s):  
Xianghong Zhou ◽  
Shi Qiu ◽  
Di Jin ◽  
Kun Jin ◽  
Xiaonan Zheng ◽  
...  

Abstract Background: Papillary renal carcinoma (PRCC) is one of the important subtypes of kidney cancer, with a high degree of heterogeneity. At present, there is still a lack of robust and accurate biomarkers for the diagnosis, prognosis and treatment selection of PRCC. Considering the important role of tumor immunity in PRCC, we aim to construct a signature based on immune-related gene pairs (IRGPs) to estimate the prognostic of patients with PRCC.Methods: We obtained gene expression profiling and clinical information of patients with PRCC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), which were divided into discovery and validation cohorts, respectively. The immune-related genes in the samples were used to construct gene pairs, and the immune-related genes pairs (IRGPs) with robust impact for overall survival (OS) were screened out to construct the signature by univariate analysis, multivariate Cox analysis, and least absolute shrinkage and selection operator (Lasso) analysis. Then we verified the prognostic role of the signature, and assessed the relationship between this signature with tumor immune infiltration and functional pathways.Results: A total of 315 patients were included in our study, and divided to discovery (n=287) and validation (n=28) cohorts. Finally, we selected 14 IRGPs with a panel of 22 unique genes to construct the prognostic signature. According to the signature, we stratified patients into high-risk group and low-risk group. In both discovery and validation cohorts, the results of Kaplan-Meier analysis showed that there were significant differences in OS between the two groups (p<0.001). Combined with multiple clinical pathological factors, the results of multivariate analyses confirmed that this signature was an independent predictor of OS (HR, 3.548; 95%CI, 2.096−6.006; p<0.001). The results of immune infiltration analysis demonstrated that the abundance of multiple tumor-infiltration lymphocytes such as CD8+ T cells, Tregs, and T follicular cell helper were significantly higher in the high-risk group. Functional analysis showed that multiple immune-related signaling pathways were enriched in the high-risk group.Conclusions: We successfully established an individualized prognostic immune-related gene pairs signature, which can accurately and independently predict the OS of patients with PRCC.


MicroRNA ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ling Lin ◽  
Kebin Hu

: MicroRNAs (miRNAs) are small non-coding RNAs (19~25 nucleotides) that regulate gene expression at a post-transcriptional level through repression of mRNA translation or mRNA decay. miR-147, which was initially discovered in mouse spleen and macrophages, has been shown to correlate with coronary atherogenesis and inflammatory bowel disease and modulate macrophage functions and inflammation through TLR-4. The altered miR-147 level has been shown in various human diseases, including infectious disease, cancer, cardiovascular disease, a neurodegenerative disorder, etc. This review will focus on the current understanding regarding the role of miR-147 in inflammation and diseases.


2021 ◽  
Vol 9 (12) ◽  
pp. 2444
Author(s):  
Daiki Imanishi ◽  
Sota Zaitsu ◽  
Shouji Takahashi

d-Aspartate oxidase (DDO) is a peroxisomal flavoenzyme that catalyzes the oxidative deamination of acidic d-amino acids. In the yeast Cryptococcus humicola strain UJ1, the enzyme ChDDO is essential for d-Asp utilization and is expressed only in the presence of d-Asp. Pyruvate carboxylase (Pyc) catalyzes the conversion of pyruvate to oxaloacetate and is involved in the import and activation of certain peroxisomal flavoenzymes in yeasts. In this study, we analyzed the role of Pyc in the expression of ChDDO gene in C. humicola strain UJ1. PYC gene disruption (∆Chpyc1) in strain UJ1 resulted in growth retardation on glucose and NH4Cl medium. The growth was restored by supplying oxaloacetate from l-Asp or α-ketoglutarate by a transaminase. On the other hand, the supply of oxaloacetate from d-Asp by ChDDO was not able to prevent growth retardation because of a significant decrease in ChDDO gene expression at the transcriptional level. The addition of pyruvate significantly decreased ChDDO gene transcription in the ∆Chpyc1 strain but increased the same in the wild-type strain, even though the intracellular pyruvate content was similar in both strains. These results suggest that ChDDO gene expression might be regulated by pyruvate metabolism, as well as by the presence of d-Asp.


Sign in / Sign up

Export Citation Format

Share Document