CT DOSIMETRY FOR THE AUSTRALIAN COHORT DATA LINKAGE STUDY

2020 ◽  
Vol 191 (4) ◽  
pp. 423-438
Author(s):  
Zoe Brady ◽  
Anna Forsythe ◽  
Jasmine McBain-Miller ◽  
Katrina J Scurrah ◽  
Nicolas Smoll ◽  
...  

Abstract Children undergoing computed tomography (CT) scans have an increased risk of cancer in subsequent years, but it is unclear how much of the excess risk is due to reverse causation bias or confounding, rather than to causal effects of ionising radiation. An examination of the relationship between excess cancer risk and organ dose can help to resolve these uncertainties. Accordingly, we have estimated doses to 33 different organs arising from over 900 000 CT scans between 1985 and 2005 in our previously described cohort of almost 12 million Australians aged 0–19 years. We used a multi-tiered approach, starting with Medicare billing details for government-funded scans. We reconstructed technical parameters from national surveys, clinical protocols, regulator databases and peer-reviewed literature to estimate almost 28 000 000 individual organ doses. Doses were age-dependent and tended to decrease over time due to technological improvements and optimisation.

2020 ◽  
Author(s):  
Ying Huang ◽  
Yang Yang ◽  
Xin Chen ◽  
Yiming Gao ◽  
Weihai Zhuo ◽  
...  

BACKGROUND CT imaging is one of the most important contributors to medical radiation exposure(1). The frequency of CT scans and radiation doses accepted by patients attracted serious concerns for health physics researchers. The utilization of advanced technology ATCM has the potentials to reduce CT radiation doses while diagnostic image quality is maintained (2-7). As ATCM adjusted tube currents slice by slice it brought challenges to organ dose estimation using conversion factors derived from fixed tube current. Cross-system communication with hospital Picture Archive and Communication System (PACS),made it possible to read massive data automatically like the scanning parameters of each slice in each case. Monte Carlo simulations are probably the most reliable techniques which could be used for accurate dose assessment. [8-11]. However, specific patient model development and specific patient dose simulations are computationally demanding and may require dedicated hardware resources, this limitation constrained its application in large scale investigation. As an alternative method, patient specific organ doses could be calculated using the patient specific scan parameters and the Monte Carlo simulated organ doses with reference human phantom, and then correct the results with patient size factors. Dw is referred as the preferred patient size metric that determined the patient group and affected organ dose. The distance of the pathway traversed by the X-ray beam could provide the best approximation of tissue length traversed during the examination (12, 13),as CT image is a cross-sectional map normalized to the linear attenuation of water (14). The purpose of current study was to establish a method to access patient-specific organ dose associated with ATCM in chest computed tomography (CT) scans by combining Monte Carlo simulation with parameters contracted from clinical CT images of each patient underwent chest CT scan with ATCM. OBJECTIVE To explore a method to access patient-specific organ dose associated with automatic tube current modulation (ATCM) in chest computed tomography (CT) scans based on the information extracted from PACS automatically. METHODS 176cases of chest CT scans were read through cross-system communication with hospital PACS. A total of 8468 images were collected and analyzed automatically using in-house software. The scanning parameters (kVp, tube current, collimation width, etc.) of each CT examination were collected in real time, and a middle CT image of each case was collected for patient size(water equivalent diameter, Dw) calculation. Based on the reference human phantom, organ doses were simulated slice by slice using Monte Carlo method. The patient specific organ doses were calculated by combining tube currents of each patient slice with the simulated results, and doses were revised by correction factors that related to patient size. RESULTS A sum of 8468 slice of tube currents were extracted and analyzed in this study, the average mAs for large size patient group was about 1.6 times to the small size patient group. For organs that covered in the scan range like lung, breast, heart, the dose values were 18.30±2.91mGy, 15.13 ±2.75mGy and 17.87±2.96mGy in small size patients(Dw smaller than 22cm).The dose values of lung, breast, heart, in medium-sized patients (Dw from 22cm to 25cm) were 21.89±4.60mGy, 18.16 ±4.13mGy and 21.46±4.60mGy, while the values were 24.98±4.40mGy, 20.81±3.66mGy and 24.77±4.46mGy respectively in large size patients(Dw larger than 25cm). The organ doses increase with the patient size due to the increase of mAs. CONCLUSIONS The PACS-based method of large batch organ dose calculation to patients undergoing chest CT with ATCM was established. The methods and results may provide guidance to the design and optimization of chest CT protocols with ATCM.


2018 ◽  
Vol 184 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Choonsik Lee ◽  
Neige Journy ◽  
Brian E Moroz ◽  
Mark Little ◽  
Richard Harbron ◽  
...  

Abstract Since our previous publication of organ dose for the pediatric CT cohort in the UK, there have been questions about the magnitude of uncertainty in our dose estimates. We therefore quantified shared and unshared uncertainties in empirical CT parameters extracted from 1073 CT films (1978–2008) from 36 hospitals in the study and propagated these uncertainties into organ doses using Monte Carlo random sampling and NCICT organ dose calculator. The average of 500 median brain and marrow doses for the full cohort was 35 (95% confidence interval: 30–40) mGy and 6 (5–7) mGy, respectively. We estimated that shared uncertainty contributed ~99% of coefficient of variation of median brain doses in brain scans compared to unshared uncertainty (1% contribution). We found that the previous brain doses were slightly underestimated for <1990 and overestimated for >1990 compared to the results in the current study due to the revised CTDI models based on CT films.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Yu-Hsuan Shao ◽  
Kevin Tsai ◽  
Sinae Kim ◽  
Yu-Jen Wu ◽  
Kitaw Demissie

Abstract Background Worldwide use of computed tomography (CT) scans has increased. However, the ionizing radiation from CT scans may increase the risk of cancer. This study examined the association between medical radiation from CT scans and the risk of thyroid cancer, lymphoma, and non-Hodgkin lymphoma (NHL) in adults. Methods We conducted a nested case-control study in a cohort constructed from a population-based universal health insurance dataset in Taiwan in 2000–2013. In total, 22 853 thyroid cancer, 13 040 leukemia, and 20 157 NHL cases with their matched controls were included. Median follow-up times were 9.29–9.90 years for the three case-control groups. Medical radiation from CT scans was identified through physician order codes in medical insurance data from the index date to 3 years before a cancer diagnosis. Conditional logistic regression modeling was used for the overall and subsets of the population defined by sex and age groups to estimate the odds ratio (OR) and 95% confidence interval (CI) of the cancer risk associated with medical radiation. Results Exposure to medical radiation from CT scans was associated with elevated risk of thyroid cancer (OR = 2.55, 95% CI = 2.36 to 2.75) and leukemia (OR = 1.55, 95% CI = 1.42 to 1.68). The elevated risk of thyroid cancer and leukemia in association with medical CT was stronger in women than in men. No statistically significant association between the risk of cancer and CT scans was observed in overall patients with NHL (OR = 1.05, 95% CI = 0.98 to 1.12); however, increased risks were found in patients aged 45 years or younger. A clear dose-response relationship was observed in patients 45 years or younger for all three cancers. Conclusions CT scans may be associated with an increased risk of thyroid cancer and leukemia in adults and in those diagnosed with NHL at a younger age.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Chengwen Yang ◽  
Ransheng Liu ◽  
Xin Ming ◽  
Ningbo Liu ◽  
Yong Guan ◽  
...  

Purpose. To investigate the dose depositions to organs at risk (OARs) and associated cancer risk in cancer patients scanned with 4-dimensional computed tomography (4DCT) as compared with conventional 3DCT. Methods and Materials. The radiotherapy treatment planning CT image and structure sets of 102 patients were converted to CT phantoms. The effective diameters of those patients were computed. Thoracic scan protocols in 4DCT and 3DCT were simulated and verified with a validated Monte Carlo code. The doses to OARs (heart, lungs, esophagus, trachea, spinal cord, and skin) were calculated and their correlations with patient effective diameter were investigated. The associated cancer risk was calculated using the published models in BEIR VII reports. Results. The average of mean dose to thoracic organs was in the range of 7.82-11.84 cGy per 4DCT scan and 0.64-0.85 cGy per 3DCT scan. The average dose delivered per 4DCT scan was 12.8-fold higher than that of 3DCT scan. The organ dose was linearly decreased as the function of patients’ effective diameter. The ranges of intercept and slope of the linear function were 17.17-30.95 and -0.0278--0.0576 among patients’ 4DCT scans, and 1.63-2.43 and -0.003--0.0045 among patients’ 3DCT scans. Relative risk of cancer increased (with a ratio of 15.68:1) resulting from 4DCT scans as compared to 3DCT scans. Conclusions. As compared to 3DCT, 4DCT scans deliver more organ doses, especially for pediatric patients. Substantial increase in lung cancer risk is associated with higher radiation dose from 4DCT and smaller patients’ size as well as younger age.


Neurographics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 228-235
Author(s):  
S. Naganawa ◽  
T. Donohue ◽  
A. Capizzano ◽  
Y. Ota ◽  
J. Kim ◽  
...  

Li-Fraumeni syndrome is a familial cancer predisposition syndrome associated with germline mutation of the tumor suppressor gene 53, which encodes the tumor suppressor p53 protein. Affected patients are predisposed to an increased risk of cancer development, including soft-tissue sarcomas, breast cancer, brain tumors, and adrenocortical carcinoma, among other malignancies. The tumor suppressor gene TP53 plays an important, complex role in regulating the cell cycle, collaborating with transcription factors and other proteins. The disruption of appropriate cell cycle regulation by mutated TP53 is considered to be the cause of tumorigenesis in Li-Fraumeni syndrome. Appropriate surveillance, predominantly by using MR imaging, is used for early malignancy screening in an effort to improve the survival rate among individuals who are affected. Patients with Li-Fraumeni syndrome are also at increased risk for neoplasm development after radiation exposure, and, therefore, avoiding unnecessary radiation in both the diagnostic and therapeutic settings is paramount. Here, we review the epidemiology, genetics, imaging findings, and the current standard surveillance protocol for Li-Fraumeni syndrome from the National Comprehensive Cancer Network as well as potential treatment options.Learning Objective: Describe the cause of second primary malignancy among patients with Li-Fraumeni syndrome.


BMJ Open ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. e043731
Author(s):  
Adnan Sharif ◽  
Javeria Peracha ◽  
David Winter ◽  
Raoul Reulen ◽  
Mike Hawkins

IntroductionSolid organ transplant patients are counselled regarding increased risk of cancer (principally due to their need for lifelong immunosuppression) and it ranks as one of their biggest self-reported worries. Post-transplantation cancer is common, associated with increased healthcare costs and emerging as a leading cause of post-transplant mortality. However, epidemiology of cancer post-transplantation remains poorly understood, with limitations including translating data from different countries and national data being siloed across different registries and/or data warehouses.Methods and analysisStudy methodology for Epidemiology of Cancer after Solid Organ Transplantation involves record linkage between the UK Transplant Registry (from NHS Blood and Transplant), Hospital Episode Statistics (for secondary care episodes from NHS Digital), National Cancer Registry (from cancer registration data hosted by Public Health England) and the National Death Registry (from NHS Digital). Deterministic record linkage will be conducted by NHS Digital, with a fully anonymised linked dataset available for analysis by the research team. The study cohort will consist of up to 85 410 solid organ transplant recipients,who underwent a solid organ transplant in England between 1 January 1985 and 31 December 2015, with up-to-date outcome data.Ethics and disseminationThis study has been approved by the Confidentiality Advisory Group (reference: 16/CAG/0121), Research Ethics Committee (reference: 15/YH/0320) and Institutional Review Board (reference: RRK5471). The results of this study will be presented at national and international conferences, and manuscripts with results will be submitted for publication in high-impact peer-reviewed journals. The information produced will also be used to develop national evidence-based clinical guidelines to inform risk stratification to enable risk-based clinical follow-up.Trial registration numberNCT02991105.


2021 ◽  
Vol 10 (4) ◽  
pp. 771
Author(s):  
In-Jeong Cho ◽  
Jeong-Hun Shin ◽  
Mi-Hyang Jung ◽  
Chae Young Kang ◽  
Jinseub Hwang ◽  
...  

We sought to assess the association between common antihypertensive drugs and the risk of incident cancer in treated hypertensive patients. Using the Korean National Health Insurance Service database, the risk of cancer incidence was analyzed in patients with hypertension who were initially free of cancer and used the following antihypertensive drug classes: Angiotensin-converting enzyme inhibitors (ACEIs); angiotensin receptor blockers (ARBs); beta blockers (BBs); calcium channel blockers (CCBs); and diuretics. During a median follow-up of 8.6 years, there were 4513 (6.4%) overall cancer incidences from an initial 70,549 individuals taking antihypertensive drugs. ARB use was associated with a decreased risk for overall cancer in a crude model (hazard ratio (HR): 0.744, 95% confidence interval (CI): 0.696–0.794) and a fully adjusted model (HR: 0.833, 95% CI: 0.775–0.896) compared with individuals not taking ARBs. Other antihypertensive drugs, including ACEIs, CCBs, BBs, and diuretics, did not show significant associations with incident cancer overall. The long-term use of ARBs was significantly associated with a reduced risk of incident cancer over time. The users of common antihypertensive medications were not associated with an increased risk of cancer overall compared to users of other classes of antihypertensive drugs. ARB use was independently associated with a decreased risk of cancer overall compared to other antihypertensive drugs.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Weiqing Liu ◽  
Shumin Ma ◽  
Lei Liang ◽  
Zhiyong Kou ◽  
Hongbin Zhang ◽  
...  

Abstract Background Studies on the XRCC3 rs1799794 polymorphism show that this polymorphism is involved in a variety of cancers, but its specific relationships or effects are not consistent. The purpose of this meta-analysis was to investigate the association between rs1799794 polymorphism and susceptibility to cancer. Methods PubMed, Embase, the Cochrane Library, Web of Science, and Scopus were searched for eligible studies through June 11, 2019. All analyses were performed with Stata 14.0. Subgroup analyses were performed by cancer type, ethnicity, source of control, and detection method. A total of 37 studies with 23,537 cases and 30,649 controls were included in this meta-analysis. Results XRCC3 rs1799794 increased cancer risk in the dominant model and heterozygous model (GG + AG vs. AA: odds ratio [OR] = 1.04, 95% confidence interval [CI] = 1.00–1.08, P = 0.051; AG vs. AA: OR = 1.05, 95% CI = 1.00–1.01, P = 0.015). The existence of rs1799794 increased the risk of breast cancer and thyroid cancer, but reduced the risk of ovarian cancer. In addition, rs1799794 increased the risk of cancer in the Caucasian population. Conclusion This meta-analysis confirms that XRCC3 rs1799794 is related to cancer risk, especially increased risk for breast cancer and thyroid cancer and reduced risk for ovarian cancer. However, well-designed large-scale studies are required to further evaluate the results.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3124
Author(s):  
Mikko Loukovaara ◽  
Annukka Pasanen ◽  
Ralf Bützow

The aggressiveness of mismatch repair (MMR) deficient endometrial carcinomas was examined in a single institution retrospective study. Outcomes were similar for MMR proficient (n = 508) and deficient (n = 287) carcinomas, identified by immunohistochemistry. In accordance with molecular classification based on The Cancer Genome Atlas (TCGA), tumors with abnormal p53 staining or polymerase-ϵ exonuclease domain mutation were excluded from the MMR proficient subgroup, termed as “no specific molecular profile” (NSMP). Compared with NSMP (n = 218), MMR deficiency (n = 191) was associated with poor disease-specific survival (p = 0.001). MMR deficiency was associated with an increased risk of cancer-related death when controlling for confounders (hazard ratio 2.0). In the absence of established clinicopathologic risk factors, MMR deficiency was invariably associated with an increased risk of cancer-related death in univariable analyses (hazard ratios ≥ 2.0). In contrast, outcomes for MMR deficient and NSMP subgroups did not differ when risk factors were present. Lymphatic dissemination was more common (p = 0.008) and the proportion of pelvic relapses was higher (p = 0.029) in the MMR deficient subgroup. Our findings emphasize the need for improved triage to adjuvant therapy and new therapeutic approaches in MMR deficient endometrial carcinomas.


2015 ◽  
Vol 43 (3) ◽  
pp. 529-537
Author(s):  
Sarah Scollon ◽  
Katie Bergstrom ◽  
Laurence B. McCullough ◽  
Amy L. McGuire ◽  
Stephanie Gutierrez ◽  
...  

In the pediatric clinical setting, the parent/guardian will almost always be the authorized representative and designated recipient of clinical and research results, making the issue of to whom results should be returned in the pediatric setting less complex than in adult settings. It is also clear that, in genomic research related to pediatric diseases such as cancer, results may be of considerable clinical, ethical, and personal significance for parents in a number of ways, including a genomic explanation of the origin of their child’s cancer, implications for the genetic testing and medical care of other siblings and of the parents themselves, and reproductive planning with regard to the recurrence risk for future children to have an increased risk of cancer. However, what remains unclear is which results should be disclosed, and under what circumstances, to parents of deceased children.


Sign in / Sign up

Export Citation Format

Share Document