Comparison of Acute Effects of Neurotoxic Compounds on Network Activity in Human and Rodent Neural Cultures

Author(s):  
L Saavedra ◽  
K Wallace ◽  
Tf Freudenrich ◽  
M Mall ◽  
Wr Mundy ◽  
...  

Abstract Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays (MEAs) allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking. The increasing number of differentiation protocols for generating neurons from human induced pluripotent stem cells (hiPSCs) holds great potential to overcome the unavailability of human primary tissue and expedite cell-based assays. Yet, the variability in neuronal activity, prolonged ontogeny and rather immature stage of most neuronal cells derived by standard differentiation techniques greatly limit their utility for screening neurotoxic effects on human neural networks. Here, we used excitatory and inhibitory neurons, separately generated by direct reprogramming from hiPSCs, together with primary human astrocytes to establish highly functional cultures with defined cell ratios. Such neuron/glia co-cultures exhibited pronounced neuronal activity and robust formation of synchronized network activity on MEAs, albeit with noticeable delay compared to primary rat cortical cultures. We further investigated acute changes of network activity in human neuron/glia co-cultures and rat primary cortical cultures in response to compounds with known adverse neuroactive effects, including GABAA receptor antagonists and multiple pesticides. Importantly, we observed largely corresponding concentration-dependent effects on multiple neural network activity metrics using both neural culture types. These results demonstrate the utility of directly converted neuronal cells from hiPSCs for functional neurotoxicity screening of environmental chemicals.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tanja Hyvärinen ◽  
Anu Hyysalo ◽  
Fikret Emre Kapucu ◽  
Laura Aarnos ◽  
Andrey Vinogradov ◽  
...  

AbstractHuman pluripotent stem cell (hPSC)-derived neurons provide exciting opportunities for in vitro modeling of neurological diseases and for advancing drug development and neurotoxicological studies. However, generating electrophysiologically mature neuronal networks from hPSCs has been challenging. Here, we report the differentiation of functionally active hPSC-derived cortical networks on defined laminin-521 substrate. We apply microelectrode array (MEA) measurements to assess network events and compare the activity development of hPSC-derived networks to that of widely used rat embryonic cortical cultures. In both of these networks, activity developed through a similar sequence of stages and time frames; however, the hPSC-derived networks showed unique patterns of bursting activity. The hPSC-derived networks developed synchronous activity, which involved glutamatergic and GABAergic inputs, recapitulating the classical cortical activity also observed in rodent counterparts. Principal component analysis (PCA) based on spike rates, network synchronization and burst features revealed the segregation of hPSC-derived and rat network recordings into different clusters, reflecting the species-specific and maturation state differences between the two networks. Overall, hPSC-derived neural cultures produced with a defined protocol generate cortical type network activity, which validates their applicability as a human-specific model for pharmacological studies and modeling network dysfunctions.


RSC Advances ◽  
2017 ◽  
Vol 7 (62) ◽  
pp. 39359-39371 ◽  
Author(s):  
Harald Dermutz ◽  
Greta Thompson-Steckel ◽  
Csaba Forró ◽  
Victoria de Lange ◽  
Livie Dorwling-Carter ◽  
...  

High-throughput platform targeting activity patterns of 3D neural cultures with arbitrary topology, by combining network-wide intracellular and local extracellular signals.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Matthieu Raveau ◽  
Denis Polygalov ◽  
Roman Boehringer ◽  
Kenji Amano ◽  
Kazuhiro Yamakawa ◽  
...  

Down syndrome, the leading genetic cause of intellectual disability, results from an extra-copy of chromosome 21. Mice engineered to model this aneuploidy exhibit Down syndrome-like memory deficits in spatial and contextual tasks. While abnormal neuronal function has been identified in these models, most studies have relied on in vitro measures. Here, using in vivo recording in the Dp(16)1Yey model, we find alterations in the organization of spiking of hippocampal CA1 pyramidal neurons, including deficits in the generation of complex spikes. These changes lead to poorer spatial coding during exploration and less coordinated activity during sharp-wave ripples, events involved in memory consolidation. Further, the density of CA1 inhibitory neurons expressing neuropeptide Y, a population key for the generation of pyramidal cell bursts, were significantly increased in Dp(16)1Yey mice. Our data refine the ‘over-suppression’ theory of Down syndrome pathophysiology and suggest specific neuronal subtypes involved in hippocampal dysfunction in these model mice.


Molecules ◽  
2016 ◽  
Vol 21 (8) ◽  
pp. 1018 ◽  
Author(s):  
Alessandro Soloperto ◽  
Marta Bisio ◽  
Gemma Palazzolo ◽  
Michela Chiappalone ◽  
Paolo Bonifazi ◽  
...  

2019 ◽  
Vol 6 (10) ◽  
pp. 191086 ◽  
Author(s):  
Vibeke Devold Valderhaug ◽  
Wilhelm Robert Glomm ◽  
Eugenia Mariana Sandru ◽  
Masahiro Yasuda ◽  
Axel Sandvig ◽  
...  

In vitro electrophysiological investigation of neural activity at a network level holds tremendous potential for elucidating underlying features of brain function (and dysfunction). In standard neural network modelling systems, however, the fundamental three-dimensional (3D) character of the brain is a largely disregarded feature. This widely applied neuroscientific strategy affects several aspects of the structure–function relationships of the resulting networks, altering network connectivity and topology, ultimately reducing the translatability of the results obtained. As these model systems increase in popularity, it becomes imperative that they capture, as accurately as possible, fundamental features of neural networks in the brain, such as small-worldness. In this report, we combine in vitro neural cell culture with a biologically compatible scaffolding substrate, surface-grafted polymer particles (PPs), to develop neural networks with 3D topology. Furthermore, we investigate their electrophysiological network activity through the use of 3D multielectrode arrays. The resulting neural network activity shows emergent behaviour consistent with maturing neural networks capable of performing computations, i.e. activity patterns suggestive of both information segregation (desynchronized single spikes and local bursts) and information integration (network spikes). Importantly, we demonstrate that the resulting PP-structured neural networks show both structural and functional features consistent with small-world network topology.


2016 ◽  
Vol 21 (5) ◽  
pp. 510-519 ◽  
Author(s):  
Ellese Cotterill ◽  
Diana Hall ◽  
Kathleen Wallace ◽  
William R. Mundy ◽  
Stephen J. Eglen ◽  
...  

We examined neural network ontogeny using microelectrode array (MEA) recordings made in multiwell MEA (mwMEA) plates over the first 12 days in vitro (DIV). In primary cortical cultures, action potential spiking activity developed rapidly between DIV 5 and 12. Spiking was sporadic and unorganized at early DIV, and became progressively more organized with time, with bursting parameters, synchrony, and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity; principal components analysis using these features demonstrated segregation of data by age at both the well and plate levels. Using random forest classifiers and support vector machines, we demonstrated that four features (coefficient of variation [CV] of within-burst interspike interval, CV of interburst interval, network spike rate, and burst rate) could predict the age of each well recording with >65% accuracy. When restricting the classification to a binary decision, accuracy improved to as high as 95%. Further, we present a novel resampling approach to determine the number of wells needed for comparing different treatments. Overall, these results demonstrate that network development on mwMEA plates is similar to development in single-well MEAs. The increased throughput of mwMEAs will facilitate screening drugs, chemicals, or disease states for effects on neurodevelopment.


2021 ◽  
Vol 22 (11) ◽  
pp. 5511
Author(s):  
Rachel-Karson Thériault ◽  
Myles St-Denis ◽  
Tristen Hewitt ◽  
Jibran Y. Khokhar ◽  
Jasmin Lalonde ◽  
...  

Cortical circuit dysfunction is thought to be an underlying mechanism of schizophrenia (SZ) pathophysiology with normalization of aberrant circuit activity proposed as a biomarker for antipsychotic efficacy. Cannabidiol (CBD) shows potential as an adjunctive antipsychotic therapy; however, potential sex effects in these drug interactions remain unknown. In the present study, we sought to elucidate sex effects of CBD coadministration with the atypical antipsychotic iloperidone (ILO) on the activity of primary cortical neuron cultures derived from the rat methylazoxymethanol acetate (MAM) model used for the study of SZ. Spontaneous network activity measurements were obtained using a multielectrode array at baseline and following administration of CBD or ILO alone, or combined. At baseline, MAM male neurons displayed increased bursting activity whereas MAM female neurons exhibited no difference in bursting activity compared to sex-matched controls. CBD administered alone showed a rapid but transient increase in neuronal activity in the MAM networks, an effect more pronounced in females. Furthermore, ILO had an additive effect on CBD-induced elevations in activity in the MAM male neurons. In the MAM female neurons, CBD or ILO administration resulted in time-dependent elevations in neuronal activity, but the short-term CBD-induced increases in activity were lost when CBD and ILO were combined. Our findings indicate that CBD induces rapid increases in cortical neuronal activity, with sex-specific drug interactions upon ILO coadministration. This suggests that sex should be a consideration when implementing adjunct therapy for treatment of SZ.


Sign in / Sign up

Export Citation Format

Share Document