Integrated transcriptomic and metabolomic analyses reveal regulation of terpene biosynthesis in the stems of Sindora glabra

2020 ◽  
Author(s):  
Niu Yu ◽  
Zhaoli Chen ◽  
Jinchang Yang ◽  
Rongsheng Li ◽  
Wentao Zou

Abstract Sesquiterpenes are important defensive secondary metabolites that are synthesized in various plant organs. Methyl jasmonate (MeJA) plays a key role in plant defense responses and secondary metabolism. Sindora glabra produces abundant sesquiterpenes in their trunks and was subjected to investigation after MeJA treatment in order to characterize the molecular mechanisms underlying the regulation of sesquiterpene biosynthesis in plant stems and further our understanding of oleoresin production in trees. A total of 14 types of sesquiterpenes in the stems of mature S. glabra trees were identified. The levels of two sesquiterpenes, α-copaene and β-caryophyllene, significantly increased after MeJA treatment. Differentially expressed genes involved in terpenoid backbone biosynthesis were significantly enriched over time, while the expression of JAZ genes involved in the jasmonic acid signaling pathway and TGA genes involved in the salicylic acid signaling pathway was significantly enriched at later time points after treatment. Two new terpene synthase genes, SgSTPS4 and SgSTPS5, were also identified. Following MeJA treatment, the expression levels of SgSTPS1, SgSTPS2, and SgSTPS4 decreased, while SgSTPS5 expression increased. The major enzymatic products of SgSTPS4 were identified as β-elemene and cyperene, while SgSTPS5 was identified as a bifunctional mono/sesquiterpene synthase that could catalyze FPP to produce nine types of sesquiterpenes, including α-copaene and β-caryophyllene, while SgSTPS5 could also use GPP to produce geraniol. Dramatic changes in the amounts of α-copaene and β-caryophyllene in response to MeJA were correlated with transcriptional expression changes of SgSTPS5 in the wood tissues. In addition, the transcription factors MYB, NAC, ARF, WRKY, MYC, ERF, and GRAS were co-expressed with terpene biosynthesis genes and might potentially regulate terpene biosynthesis. Metabolite changes were further investigated with UPLC-TOF/MS following MeJA treatment. These results contribute to the elucidation of the molecular mechanisms of terpene biosynthesis and regulation as well as to the identification of candidate genes involved in these processes.

1990 ◽  
Vol 45 (6) ◽  
pp. 569-575 ◽  
Author(s):  
Dierk Scheel ◽  
Jane E. Parker

Abstract Plants defend themselves against pathogen attack by activating a whole set of defense responses, most of them relying on transcriptional activation of plant defense genes. The same responses are induced by treatment of plant cells with elicitors released from the pathogen or from the plant surface. Several plant/elicitor combinations have been used successfully as experimental systems to investigate the molecular basis of plant defense responses. Receptor-like structures on the plasma membrane of plant cells appear to bind the elicitors. Thereby, intracellular signal transduction chains are initiated which finally result in the activation of plant defense genes. A better understanding of the molecular mechanisms of early processes in plant defense responses, as provided by these studies, may in the long term help to develop environmentally safe plant protection methods for agriculture.


2020 ◽  
Vol 71 (22) ◽  
pp. 7393-7404
Author(s):  
Xiaoxiao Liu ◽  
Hui Liu ◽  
Jingjing He ◽  
Siyuan Zhang ◽  
Hui Han ◽  
...  

Abstract Plants have evolved an innate immune system to protect themselves from pathogen invasion with the help of intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, though the mechanisms remain largely undefined. RIN13 (RPM1-interacting protein 13) was previously reported to enhance disease resistance, and suppress RPM1 (a CNL-type NLR)-mediated hypersensitive response in Arabidopsis via an as yet unknown mechanism. Here, we show that RIN13 is a nuclear-localized protein, and functions therein. Overexpression of RIN13 leads to autoimmunity with high accumulation of salicylic acid (SA), constitutive expression of pathogenesis-related genes, enhanced resistance to a virulent pathogen, and dwarfism. In addition, genetic and transcriptome analyses show that SA-dependent and SA-independent pathways are both required for RIN13-mediated disease resistance, with the EDS1/PAD4 complex as an integration point. RIN13-induced dwarfism was rescued completely by either the pad4-1 or the eds1-2 mutant but partially by snc1-r1, a mutant of the TNL gene SNC1, suggesting the involvement of EDS1/PAD4 and SNC1 in RIN13 functioning. Furthermore, transient expression assays indicated that RIN13 promotes the nuclear accumulation of PAD4. Collectively, our study uncovered a signaling pathway whereby SNC1 and EDS1/PAD4 act together to modulate RIN13-triggered plant defense responses.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Pei-Qiong Shi ◽  
Xin-Yi Chen ◽  
Xiao-Sheng Chen ◽  
Ning Lv ◽  
Yuan Liu ◽  
...  

ABSTRACT The whitefly Bemisia tabaci is a destructive agricultural pest that frequently harbors various species of secondary symbionts including Rickettsia. Previous studies have revealed that the infection of Rickettsia can improve whitefly performance on food plants; however, to date, no evidence has shown, if, and how, Rickettsia manipulates the plant-insect interactions. In the current study, the effects of Rickettsia persistence on the induced plant defenses and the consequent performance of whitefly B. tabaci were investigated. Results revealed that Rickettsia can be transmitted into plants via whitefly feeding and remain alive within the cotton plants for at least 2 weeks. The different expression genes of cotton plants were mostly concentrated in the phytohormone signaling pathways, the marker genes of jasmonic-acid signaling pathway (AOC, AOS, LOX, MYC2) were significantly downregulated, while the marker genes of the salicylic-acid signaling pathway (WRKY70, PR-1) were upregulated. Biological experiments revealed that the fecundity of Rickettsia negative B. tabaci significantly increased when they fed on Rickettsia-persistent cotton plants. Taken together, we provide experimental evidence that the persistence of Rickettsia and its induced defense responses in cotton plants can increase the fitness of whitefly and, by this, Rickettsia may increase its infection and spread within its whitefly host.


2020 ◽  
Vol 20 (6) ◽  
pp. 734-750
Author(s):  
Wallax A.S. Ferreira ◽  
Rommel R. Burbano ◽  
Claudia do Ó. Pessoa ◽  
Maria L. Harada ◽  
Bárbara do Nascimento Borges ◽  
...  

Background: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. Objective: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. Methods: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). Results: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. Conclusions: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mari Kurokawa ◽  
Masataka Nakano ◽  
Nobutaka Kitahata ◽  
Kazuyuki Kuchitsu ◽  
Toshiki Furuya

AbstractMicroorganisms that activate plant immune responses have attracted considerable attention as potential biocontrol agents in agriculture because they could reduce agrochemical use. However, conventional methods to screen for such microorganisms using whole plants and pathogens are generally laborious and time consuming. Here, we describe a general strategy using cultured plant cells to identify microorganisms that activate plant defense responses based on plant–microbe interactions. Microbial cells were incubated with tobacco BY-2 cells, followed by treatment with cryptogein, a proteinaceous elicitor of tobacco immune responses secreted by an oomycete. Cryptogein-induced production of reactive oxygen species (ROS) in BY-2 cells served as a marker to evaluate the potential of microorganisms to activate plant defense responses. Twenty-nine bacterial strains isolated from the interior of Brassica rapa var. perviridis plants were screened, and 8 strains that enhanced cryptogein-induced ROS production in BY-2 cells were selected. Following application of these strains to the root tip of Arabidopsis seedlings, two strains, Delftia sp. BR1R-2 and Arthrobacter sp. BR2S-6, were found to induce whole-plant resistance to bacterial pathogens (Pseudomonas syringae pv. tomato DC3000 and Pectobacterium carotovora subsp. carotovora NBRC 14082). Pathogen-induced expression of plant defense-related genes (PR-1, PR-5, and PDF1.2) was enhanced by the pretreatment with strain BR1R-2. This cell–cell interaction-based platform is readily applicable to large-scale screening for microorganisms that enhance plant defense responses under various environmental conditions.


2021 ◽  
Vol 22 (8) ◽  
pp. 4214
Author(s):  
Gautam Anand ◽  
Meirav Leibman-Markus ◽  
Dorin Elkabetz ◽  
Maya Bar

Plants lack a circulating adaptive immune system to protect themselves against pathogens. Therefore, they have evolved an innate immune system based upon complicated and efficient defense mechanisms, either constitutive or inducible. Plant defense responses are triggered by elicitors such as microbe-associated molecular patterns (MAMPs). These components are recognized by pattern recognition receptors (PRRs) which include plant cell surface receptors. Upon recognition, PRRs trigger pattern-triggered immunity (PTI). Ethylene Inducing Xylanase (EIX) is a fungal MAMP protein from the plant-growth-promoting fungi (PGPF)–Trichoderma. It elicits plant defense responses in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum), making it an excellent tool in the studies of plant immunity. Xylanases such as EIX are hydrolytic enzymes that act on xylan in hemicellulose. There are two types of xylanases: the endo-1, 4-β-xylanases that hydrolyze within the xylan structure, and the β-d-xylosidases that hydrolyze the ends of the xylan chain. Xylanases are mainly synthesized by fungi and bacteria. Filamentous fungi produce xylanases in high amounts and secrete them in liquid cultures, making them an ideal system for xylanase purification. Here, we describe a method for cost- and yield-effective xylanase production from Trichoderma using wheat bran as a growth substrate. Xylanase produced by this method possessed xylanase activity and immunogenic activity, effectively inducing a hypersensitive response, ethylene biosynthesis, and ROS burst.


Sign in / Sign up

Export Citation Format

Share Document