Plant Growth Regulator Selection and Application Rate Influence Annual Bluegrass Control in Creeping Bentgrass Putting Greens

2011 ◽  
Vol 8 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Christian M. Baldwin ◽  
A. Douglas Brede
2013 ◽  
Vol 27 (3) ◽  
pp. 520-526 ◽  
Author(s):  
Matthew D. Jeffries ◽  
Fred H. Yelverton ◽  
Travis W. Gannon

Amicarbazone is a photosystem II–inhibiting herbicide recently registered for annual bluegrass control in established turf systems that include creeping bentgrass. However, research to date reveals potential issues with creeping bentgrass tolerance to amicarbazone. Currently, the plant-growth regulator paclobutrazol is widely adopted by turf managers for chemical annual bluegrass suppression in creeping bentgrass putting greens. Field experiments were conducted throughout North Carolina in the spring of 2010 and 2011 to assess treatment regimens that included amicarbazone (49, 65, or 92 g ai ha−1) and paclobutrazol (70, 140, or 280 g ai ha−1) applied alone, as tank-mixtures, or used in tandem, at varying rates and sequential timings for annual bluegrass control in creeping bentgrass putting greens. In general, regimens including both compounds provided greater annual bluegrass control and acceptable turfgrass tolerance compared with stand-alone applications of amicarbazone at 8 and 12 wk after initial treatment (WAIT). When comparing regimens that included amicarbazone at 49 or 65 g ha−1, creeping bentgrass tolerance was greater for the higher application rate applied less frequently. These results indicate amicarbazone usage on creeping bentgrass greens may be beneficially affected with the incorporation of paclobutrazol to treatment regimens because annual bluegrass control with the combination was equal to or greater than stand-alone amicarbazone applications, and creeping bentgrass tolerance was superior 8 and 12 WAIT.


1999 ◽  
Vol 13 (4) ◽  
pp. 829-834 ◽  
Author(s):  
Gregory E. Bell ◽  
Edward Odorizzi ◽  
T. Karl Danneberger

Two field studies, a seeded study and a golf course study, were conducted to compare competition among creeping bentgrass, annual bluegrass, and roughstalk bluegrass when subjected to common weed control practices and foliar applications of iron and magnesium. A research site was selected for the seeded study and divided into 10 whole plots receiving irrigation at either 50 or 100% evapotranspiration deficit. Each whole plot was further divided into subplots receiving one of seven treatments: bensulide, ethofumesate, trinexapac-ethyl, foliar Mg, foliar Fe, foliar Mg plus foliar Fe, and control. The site was seeded to a mixture of creeping bentgrass, annual bluegrass, and roughstalk bluegrass in September 1995, and treatments began in March 1996. Annual bluegrass was reduced 29% in plots treated with foliar Fe and 65% in plots treated with foliar Fe plus foliar Mg. Roughstalk bluegrass was significantly reduced in seeded plots treated with foliar iron (50%), plant growth regulator (75%), and foliar iron plus foliar magnesium (100%). Annual bluegrass and roughstalk bluegrass proportions were not affected by irrigation regime. In a second study, the most effective treatment, foliar magnesium plus foliar iron, was tested on a working golf course fairway and on a practice putting green beginning April 1997 and ending November 1997. Treatments on the golf course fairway and practice putting green were ineffective due to the established, perennial nature of the annual bluegrass biotypes on these sites. Further research is required to improve the efficacy of nutritional treatments on these perennials.


Crop Science ◽  
2018 ◽  
Vol 58 (4) ◽  
pp. 1801-1807 ◽  
Author(s):  
E. H. Reasor ◽  
J. T. Brosnan ◽  
J. P. Kerns ◽  
W. J. Hutchens ◽  
D. R. Taylor ◽  
...  

2015 ◽  
Vol 25 (2) ◽  
pp. 214-220
Author(s):  
Christian M. Baldwin ◽  
A. Douglas Brede ◽  
Jami J. Mayer

With the emergence of glyphosate-tolerant cultivars, identifying management strategies not applicable with older cultivars need to be revisited. Objectives of these research trials were to quantify the growth regulation effects following a glyphosate application and to determine the safety of tank mixing glyphosate with another herbicide, various nitrogen (N) sources, and a plant growth regulator (PGR) on a glyphosate-tolerant perennial ryegrass [PRG (Lolium perenne L.)] cultivar, Replay. In the growth regulation trial, glyphosate was applied at 0 to 1.03 lb/acre, whereas PGRs flurpimidol, trinexapac-ethyl, paclobutrazol, and trinexapac-ethyl + flurpimidol were applied at 0.50, 0.18, 0.37, and 0.09 + 0.22 lb/acre, respectively, on 15 July 2010 and 2 Aug. 2012. In the tank mixing trial, dicamba (0.50 lb/acre), urea (15 lb/acre N), and ammonium sulfate [AMS (15 lb/acre N)] were applied alone or tank mixed with glyphosate at 0 to 0.52 lb/acre. Tank mixing urea with glyphosate had minimal effect on PRG color, while adding AMS consistently improved color at the highest glyphosate rate of 0.52 lb/acre. Twenty days following a glyphosate application, only rates >0.40 lb/acre resulted in significant growth regulation compared with untreated plots. This study indicates that tank mixing glyphosate with another herbicide, a PGR, and various N sources appear safe to the glyphosate-tolerant PRG cultivar. Also, the growth regulating effects of glyphosate applications would serve as an additional benefit to annual bluegrass (Poa annua L.) control reported in previous trials.


Plant Disease ◽  
2016 ◽  
Vol 100 (3) ◽  
pp. 577-582 ◽  
Author(s):  
Joseph A. Roberts ◽  
David F. Ritchie ◽  
James P. Kerns

Bacterial etiolation, caused by Acidovorax avenae, is a widespread problem in creeping bentgrass putting green turf. The symptoms normally appear as abnormally elongated turfgrass stems and leaves. Observations at multiple field sites suggest the involvement of plant growth regulators (i.e., GA-biosynthesis inhibitors) commonly applied to turf, alluding to a phytohormone imbalance caused by the bacterium. A 2-year field study examined the effects of trinexapac-ethyl, flurprimidol, and paclobutrazol on bacterial etiolation severity caused by A. avenae. Trinexapac-ethyl applied at 0.05 kg a.i. ha−1 every 7 days and 0.10 kg ha−1 every 14 days increased etiolation compared with all other treatments in both years. Flurprimidol and paclobutrazol were not different from the control but high-rate applications caused phytotoxicity that lowered turf quality early in 2014. When the etiolated turfgrass was removed with mowing, turfgrass treated with trinexapac-ethyl exhibited the highest turfgrass quality on most rating dates. Results from this work illustrate that using plant growth regulator materials with different modes of action is a solution to managing creeping bentgrass growth while limiting the potential for bacterial etiolation outbreaks.


Sign in / Sign up

Export Citation Format

Share Document