Soybean Mosaic Virus: Effects of Primary Disease Incidence on Yield and Seed Quality

Plant Disease ◽  
1987 ◽  
Vol 71 (3) ◽  
pp. 237 ◽  
Author(s):  
J. H. Hill
2013 ◽  
Vol 103 (9) ◽  
pp. 941-948 ◽  
Author(s):  
Sushma Jossey ◽  
Houston A. Hobbs ◽  
Leslie L. Domier

Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean (Glycine max). The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing mutants in and chimeric recombinants between SMV 413 (efficiently aphid and seed transmitted) and an isolate of SMV G2 (not aphid or seed transmitted). As previously reported, the DAG amino acid sequence motif near the amino terminus of the coat protein (CP) was the major determinant in differences in aphid transmissibility of the two SMV isolates, and helper component proteinase (HC-Pro) played a secondary role. Seed transmission of SMV was influenced by P1, HC-Pro, and CP. Replacement of the P1 coding region of SMV 413 with that of SMV G2 significantly enhanced seed transmissibility of SMV 413. Substitution in SMV 413 of the two amino acids that varied in the CPs of the two isolates with those from SMV G2, G to D in the DAG motif and Q to P near the carboxyl terminus, significantly reduced seed transmission. The Q-to-P substitution in SMV 413 also abolished virus-induced seed-coat mottling in plant introduction 68671. This is the first report associating P1, CP, and the DAG motif with seed transmission of a potyvirus and suggests that HC-Pro interactions with CP are important for multiple functions in the virus infection cycle.


Plant Disease ◽  
2013 ◽  
Vol 97 (4) ◽  
pp. 561-561 ◽  
Author(s):  
S. Khankhum ◽  
P. Bollich ◽  
R. A. Valverde

Kudzu is an introduced legume commonly found growing as a perennial throughout the southeastern United States. This fast-growing vine was originally planted as an ornamental for forage and to prevent erosion (2), but is now considered an invasive species. During April 2011, a kudzu plant growing near a soybean field in Amite (Tangipahoa Parish, southeastern LA) was observed with foliar ringspot and mottle symptoms. Leaf samples were collected, and sap extracts (diluted 1:5 w/v in 0.02 M phosphate buffer pH 7.2) were mechanically inoculated onto carborundum-dusted leaves of at least five plants of the following species: kudzu, common bean (Phaseolus vulgaris) cv. Black Turtle Soup, globe amaranth (Gomphrena globosa), Nicotiana benthamiana, and soybean (Glycine max) cv. Asgrow AG 4801. Two plants of each species were also mock-inoculated. Eight to fourteen days after inoculation, all virus-inoculated plants showed virus symptoms that included foliar ringspots, mosaic, and mottle. Common bean and soybean also displayed necroses and were stunted. ELISA using antisera for Bean pod mottle virus, Cucumber mosaic virus, Soybean mosaic virus, and Tobacco ringspot virus (TRSV) (Agdia Inc., Elkhart, IN) were performed on field-collected kudzu and all inoculated plants species. ELISA tests resulted positive for TRSV but were negative for the other three viruses. All virus-inoculated plant species tested positive by ELISA. To confirm that TRSV was present in the samples, total RNA was extracted from infected and healthy plants and used in RT-PCR tests. The set of primers TRS-F (5′TATCCCTATGTGCTTGAGAG3′) and TRS-R (5′CATAGACCACCAGAGTCACA3′), which amplifies a 766-bp fragment of the RdRp of TRSV, were used (3). Expected amplicons were obtained with all of the TRSV-infected plants and were cloned and sequenced. Sequence analysis confirmed that TRSV was present in kudzu. Nucleotide sequence comparisons using BLAST resulted in a 95% similarity with the bud blight strain of TRSV which infects soybeans (GenBank Accession No. U50869) (1). TRSV has been reported to infect many wild plants and crops, including soybean. In soybean, this virus can reduce yield and seed quality (4). During summer 2012, three additional kudzu plants located near soybean fields showing ringspot symptoms were also found in Morehouse, Saint Landry, and West Feliciana Parishes. These three parishes correspond to the north, central, and southeast regions, respectively. These plants also tested positive for TRSV by ELISA and RT-PCR. The results of this investigation documents that TRSV was found naturally infecting kudzu near soybean fields in different geographical locations within Louisiana. Furthermore, a TRSV strain closely related to the bud blight strain that infects soybean was identified in one location (Amite). This finding is significant because infected kudzu potentially could serve as the source of TRSV for soybean and other economically important crops. To the best of our knowledge, this is the first report of TRSV infecting kudzu. References: (1) G. L. Hartman et al. 1999. Compendium of Soybean Diseases. American Phytopathological Society, St. Paul, MN. (2) J. H. Miller and B. Edwards. S. J. Appl. Forestry 7:165, 1983. (3) S. Sabanadzovic et al. Plant Dis. 94:126, 2010. (4) P. A. Zalloua et al. Virology 219:1, 1996.


2018 ◽  
Vol 69 (4) ◽  
pp. 395 ◽  
Author(s):  
Le Gao ◽  
Shi Sun ◽  
Kai Li ◽  
Liwei Wang ◽  
Wensheng Hou ◽  
...  

Soybean mosaic virus (SMV) causes significant yield losses and seed-quality deterioration in the soybean (Glycine max (L.) Merr.) growing areas of China, and breeding disease-resistant cultivars is the most common approach for controlling the spread of the disease and the destruction of soybean crop. In this study, 97 widely grown soybean cultivars representing nine decades (1923–2006) of breeding from the four main soybean-producing subregions in China (Northern Heilongjiang (NH), Mid-Southern Heilongjiang (MSH), Jilin-Liaoning (JL) and Yellow–Huai-Hai River Valleys (YHH)) were inoculated with six prevalent SMV strains: SC3, SC7, SC8, SC11, SC15 and SC18. The average disease index (ADI) of the six SMV strains ranged from 26.95 to 48.97, and the numbers of resistant and susceptible cultivars to the six SMV strains ranged from 27 (27.8%) to 64 (66.0%) and 33 (34.0%) to 70 (72.2%), respectively. The ADIs of cultivars from NH, MSH, JL and YHH were 50.82, 47.27, 43.10 and 33.05, respectively. Soybean cultivars released in the 1940s and 1960s had the highest and lowest ADI values, 53.95 and 32.03, respectively. From NH and JL, all individual strain disease index (DI) values exhibited decreasing trend over time, but no decreasing trend in DI values was observed from MSH. From YHH, DI values for SC3 and SC18 displayed apparent increasing trend over time, and DI values for SC15 showed an obvious decreasing trend. In all, 24 soybean cultivars were identified as having broad-spectrum resistance, with ADI values ranging from 0.80 to 35.52 for the six SMV strains, and 13 soybean cultivars were identified as highly resistant to at least one SMV strain. The findings of this study will contribute to monitoring the pattern of spatio-temporal variation in SMV resistance in different soybean-producing areas of China and facilitate conventional and molecular breeding programs for SMV resistance in soybean.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 219 ◽  
Author(s):  
Kristin Widyasari ◽  
Mazen Alazem ◽  
Kook-Hyung Kim

Soybean mosaic virus (SMV) occurs in all soybean-growing areas in the world and causes huge losses in soybean yields and seed quality. During early viral infection, molecular interactions between SMV effector proteins and the soybean resistance (R) protein, if present, determine the development of resistance/disease in soybean plants. Depending on the interacting strain and cultivar, R-protein in resistant soybean perceives a specific SMV effector, which triggers either the extreme silent resistance or the typical resistance manifested by hypersensitive responses and induction of salicylic acid and reactive oxygen species. In this review, we consider the major advances that have been made in understanding the soybean–SMV arms race. We also focus on dissecting mechanisms SMV employs to establish infection and how soybean perceives and then responds to SMV attack. In addition, progress on soybean R-genes studies, as well as those addressing independent resistance genes, are also addressed.


1998 ◽  
Vol 88 (9) ◽  
pp. 895-901 ◽  
Author(s):  
Forrest W. Nutter ◽  
Patricia M. Schultz ◽  
John H. Hill

Strain-specific monoclonal antibodies were used to follow the temporal increase and spatial spread of soybean mosaic virus (SMV) strain G-5 released from a point source. The use of strain-specific monoclonal antibodies allowed discrimination of within-field temporal and spatial spread of SMV strain G-5 from non-G-5 SMV isolates that originated from exogenous field sources. SMV isolates originating from exogenous sources have potential to alter the temporal and spatial pattern of within-field virus spread, which could potentially affect the choice of models used to quantify within-field pathogen spread. Analysis of SMV epidemics in field-plot experiments indicated that the logistic model was the most appropriate model to describe and compare the temporal spread of SMV among years. On the basis of ordinary runs analyses, within-field spread of SMV strain G-5 was random in 1991 and 1994, but was mostly aggregated in 1992 and 1993. Non-G-5 SMV isolates arising from exogenous sources displayed a random spatial pattern over time. This is the first study in which pathogen incidence (detection of SMV using strain-specific monoclonal antibodies) as opposed to disease incidence (based on symptoms) was employed to monitor and model SMV spread in time and space.


2020 ◽  
Vol 71 (12) ◽  
pp. 987
Author(s):  
Yuan Yuan ◽  
Yongqing Yang ◽  
Jinlong Yin ◽  
Yingchao Shen ◽  
Bowen Li ◽  
...  

Abstract Soybean mosaic virus (SMV) is a worldwide disease of soybean (Glycine max (L.) Merr.) that can cause serious reduction in yield and seed quality. Soybean cv. Qihuang-1 is an important source of resistance to SMV in China, carrying a resistance gene (RSC3Q) against SMV strain SC3. In order to discover genes and networks regulated by RSC3Q-mediated resistance in Qihuang-1, we analysed transcriptome data of a pair of near-isogenic lines, R (RSC3Q) and S (rSC3Q), from the cross Qihuang-1 × Nannong 1138-2 (rSC3Q), after SC3 inoculation. Many differentially expressed genes (DEGs) were identified in the R and S lines at 6, 20 and 48 h post-inoculation. Based on pathway-enrichment analysis of DEGs, three genes encoding calmodulin-like protein (Glyma03g28650, Glyma19g31395 and Glyma11g33790) with downregulated expression in the S line were identified in the plant–pathogen interaction pathway at 6 h post-inoculation. Analyses by quantitative real-time PCR were performed to verify that these three genes were not beneficial for SMV infection. Our results also revealed a complex plant-hormone signal network in RSC3Q-mediated resistance during the early stage of SMV infection. Expression of jasmonic acid repressor genes (TIFY/JAZ) and abscisic acid-induced genes (PP2C3a) was upregulated in the R line but not the S line. More DEGs related to indole-3-acetic acid were found in the R line than the S line, and no salicylic acid-related DEGs were identified. These results suggest that suppression of jasmonic acid or promotion of abscisic acid is important for RSC3Q-mediated resistance against SC3, and that salicylic acid may not act as a main regulator of RSC3Q-mediated resistance during early stages of SC3 infection. Growth and development were greatly affected through RSC3Q-mediated resistance responses after SC3 infection. Our understanding would be enhanced by identification of factors associated with RSC3Q that help to trigger the resistance response.


Author(s):  
Yugandhar Gokidi ◽  
M. N. Singh ◽  
Ashok Singamsetti ◽  
Swathi Lekkala

Greengram [Vignaradiata(L.) Wilczek] is an economically important grain legume crop next to chickpea, pigeon pea and urad gram. Among the biotic factors, Mungbean Yellow Mosaic Virus (MYMV) is reported to be the most destructive viral diseases, which may reduce the seed quality as well as the yield losses up to 100 per cent. It is transmitted through whitefly (Bemisiatabaci) in a persistent manner throughout Asia, including India. A set of forty-two diverse mungbean genotypes were sown in two replications using a Randomized Block Desigh (RBD) during the summer season of 2015. The infector row method was adopted to evaluate a set of mungbean genotypes to know the difference in the level of resistance against MYMV infection under field condition during summer, 2015. Percent Disease Incidence (PDI) was calculated at 30 DAS and 50 DAS respectively. It varied from 2.18 to 64.77% and 5.38 to 76.87% at 30 DAS and 50 DAS respectively in summer, 2015. On the basis of disease severity recorded, the mungbean genotypes were classified in to five disease infection categories. Out of the forty-two mungbean genotypes, thirteen genotypes viz., Pusa 0672, IPM 205-7, HUM 8, KM 2245, IPM-2-03, ML 1464, KM 2241, PDM-139, TARM-1, HUM 26, Meha, HUM 16 and IPM 409-4 were found to be resistant and may provide the source of resistance against MYMV to develop mapping population for molecular breeding, development of molecular markers, QTL identification for MYMV resistance, as well as development of MYMV resistant varieties.


Plant Disease ◽  
2005 ◽  
Vol 89 (9) ◽  
pp. 926-934 ◽  
Author(s):  
M. E. Lee Burrows ◽  
C. M. Boerboom ◽  
J. M. Gaska ◽  
C. R. Grau

The soybean aphid, Aphis glycines, causes yield loss and transmits viruses such as Soybean mosaic virus (SMV) in soybean (Glycine max). Field experiments were designed to monitor the landing rate of A. glycines and transmission of SMV to soybean grown in six crop management environments. Management systems evaluated were the application of postemergence insecticide or no insecticide, and within each insecticide treatment no herbicide, glyphosate, or imazamox application. In 2001, early-season incidence of SMV was 2%, which increased to 80% within 18 days after the beginning of the A. glycines flight. In 2002, the incidence of SMV was 1% prior to the arrival of A. glycines, and increased to 44% within 21 days. The landing rate of A. glycines was fivefold higher in 2001 than in 2002. The incidence of SMV was lower in insecticide-treated plots in 2002, but no effect of insecticide was seen in 2001. Imazamox slowed the progression of SMV incidence, but the final incidence of SMV-infected plants was the same. Glyphosate had no consistent effect on SMV incidence. Yield was higher in the insecticide-treated plots in 2002, but not 2001. Insecticide and herbicide application had no substantial effects on seed quality.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 886 ◽  
Author(s):  
Wenhua Bao ◽  
Ting Yan ◽  
Xiaoyi Deng ◽  
Hada Wuriyanghan

Soybean mosaic virus (SMV), which belongs to the Potyviridae, causes significant reductions in soybean yield and seed quality. In this study, both tag-free and reporter gene green fluorescent protein (GFP)-containing infectious clones for the SMV N1 strain were constructed by Gibson assembly and with the yeast homologous recombination system, respectively. Both infectious clones are suitable for agroinfiltration on the model host N. benthamiana and show strong infectivity for the natural host soybean and several other legume species. Both infectious clones were seed transmitted and caused typical virus symptoms on seeds and progeny plants. We used the SMV-GFP infectious clone to further investigate the role of key amino acids in the silencing suppressor helper component-proteinase (Hc-Pro). Among twelve amino acid substitution mutants, the co-expression of mutant 2—with an Asparagine→Leucine substitution at position 182 of the FRNK (Phe-Arg-Asn-Lys) motif—attenuated viral symptoms and alleviated the host growth retardation caused by SMV. Moreover, the Hc-Prom2 mutant showed stronger oligomerization than wild-type Hc-Pro. Taken together, the SMV infectious clones will be useful for studies of host–SMV interactions and functional gene characterization in soybeans and related legume species, especially in terms of seed transmission properties. Furthermore, the SMV-GFP infectious clone will also facilitate functional studies of both virus and host genes in an N. benthamiana transient expression system.


Sign in / Sign up

Export Citation Format

Share Document