scholarly journals Reservoir Weed Hosts for Turnip mosaic virus in Iran

Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 339-339 ◽  
Author(s):  
Sh. Farzadfar ◽  
K. Ohshima ◽  
R. Pourrahim ◽  
A. R. Golnaraghi ◽  
S. Sajedi ◽  
...  

During the summer of 2003, weed samples of Rapistrum rugosum and Sisymbrium loeselii showing severe mosaic, malformation, and stunting were collected from cauliflower fields in Tehran Province of Iran. Using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with specific polyclonal antibodies, the samples were tested for the presence of Beet western yellows virus, Cauliflower mosaic virus, Radish mosaic virus, Turnip crinkle virus, Turnip mosaic virus (TuMV) (DSMZ, Braunschweig, Germany), Cucumber mosaic virus, and Tobacco mosaic virus (Sanofi Diagnostics Pasteur, Marnes-La-Coquette, France). Leaf extracts were used for mechanical inoculation and they produced chlorotic local lesions on Chenopodium amaranticolor, necrotic lesions on leaves and shoot apex necrosis on Nicotiana glutinosa, leaf deformation, mosaic, and stunting on Petunia hybrida, and severe mosaic, distortion, and stunting on Brassica rapa. These symptoms were similar to those that were described previously for TuMV (4). ELISA results showed that the original leaf samples and inoculated indicator plants reacted positively with TuMV antibodies, but not with antibodies for any of the other viruses listed above. Also, reverse transcription-polymerase chain reaction of total RNA extracted from the collected leaf samples using the universal primers for potyviruses (3) resulted in the amplification of two fragments of the expected sizes, approximately 700 and 1,700 bp. TuMV, a member of the genus Potyvirus in the family Potyviridae, is transmitted by aphids in a nonpersistent manner (4). This virus is geographically widespread with a wide host range that can infect 318 species in 156 genera of 43 plant families including, Brassicaceae, Chenopodiaceae, Asteraceae, Cucurbitaceae, and Solanaceae (2,4). R. rugosum and S. loeselii, two annual or biennial plants in the Brassicaceae family, were common and widely distributed in the fields surveyed. The presence of TuMV-infected weed hosts in cauliflower fields may impact disease management strategies. TuMV was first observed on stock plants (Matthiola sp.) in Iran (1). To our knowledge, this is the first report of natural occurrence of TuMV on weed hosts in Iran. References: (1) M. Bahar et al. Iran. J. Plant Pathol. 21:11, 1985. (2) J. R. Edwardson and R. G. Christie. The potyvirus group. Fla. Agric. Exp. Stn. Monogr. Ser. No. 16, 1991. (3) A. Gibbs and A. Mackenzie. J. Virol. Methods 63:9, 1997. (4) J. A. Tomlinson. Turnip mosaic virus. No. 8 in: Descriptions of Plant Viruses. CMI/AAB, Surrey, England, 1970.

Plant Disease ◽  
2004 ◽  
Vol 88 (8) ◽  
pp. 909-909 ◽  
Author(s):  
S. Farzadfar ◽  
R. Pourrahim ◽  
A. R. Golnaraghi ◽  
S. Jalali ◽  
A. Ahoonmanesh

During the spring and summer of 2003, symptoms of mosaic, mottle, and crinkle were observed in cauliflower (Brassica oleracea) and turnip (Brassica rapa) fields in the Qazvin and Esfahan provinces of Iran, respectively. Leaf extracts of these plants, made infective by mechanical inoculation, caused necrotic local lesions on Chenopodium amaranticolor, chlorotic ring spot on Nicotiana tabacum cv. Samsun, and chlorotic local lesions followed by systemic mosaic on Brassica rapa (1). Using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and specific polyclonal antibodies (As-0120 and PV-0355) that were kindly prepared by S. Winter (DSMZ, Braunschweig, Germany), the samples were tested for the presence of Radish mosaic virus (RaMV) (family Comoviridae, genus Comovirus). ELISA results showed that the original leaf samples and inoculated indicator plants reacted positively to RaMV antibodies. RaMV has been reported in the United States, Japan, and Europe on turnip and other crucifers (1,2). To our knowledge, this is the first report of RaMV occurring in Iran. References: (1) R. N. Campbell. Radish mosaic virus. No. 121 in: Descriptions of Plant Viruses. CMI/AAB, Surrey, England, 1973. (2) D. D. Sutic et al. Handb. Plant Virus Diseases. CRC Press, Boca Raton, FL, 1999.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Edwige Berthelot ◽  
Jean-Luc Macia ◽  
Alexandre Martinière ◽  
Alexandre Morisset ◽  
Romain Gallet ◽  
...  

Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 424-424 ◽  
Author(s):  
R. Pourrahim ◽  
A. Ahoonmanesh ◽  
Sh. Farzadfar ◽  
F. Rakhshandehro ◽  
A. R. Golnaraghi

During 2001, a survey was conducted in vineyards in northwestern Iran and the eastern and western provinces of Azarbaijan, Zanjan, and Qazvin to detect the presence of Arabis mosaic virus (ArMV) and Grapevine leaf roll associated virus-3 (GLRaV-3). From December 2001 through March 2002, 5,352 dormant stem cuttings were collected. A portion of all stem cuttings was callused, rooted, potted, and grown in a greenhouse. Each sample was tested for the presence of ArMV and GLRaV-3 with specific antisera (Bioreba, Basel, Switzerland). Extracts of bark scrapings were prepared from the remaining portion of the dormant cuttings. After bud break of rooted cuttings, leaf extracts were prepared by the method used by Rowhani et al. (2). Dormant bark and leaf extracts were used with double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Among the samples tested, ArMV and GLRaV-3 were found in 4.7 and 2.3% of the collection, respectively. Leaf extracts that had tested positive for ArMV using ELISA, were mechanically inoculated on the indicator host plants of Chenopodium amaranticolor, Cucumis sativus, and Petunia × hybrida. All plants developed local lesions that subsequently developed systemic chlorosis that is reported for ArMV. Biological assays confirmed the results of ArMV using ELISA. To confirm testing, a number of the samples that were found positive for GLRaV-3 in ELISA tests were tested by reverse transcription-polymerase chain reaction (RT-PCR) technique using previously described specific primers (1). The PCR reaction resulted in the specifically amplification of a 300-bp fragment of GLRaV-3 RNA. In cvs. White Keshmesh, Ghezel Ozum, Red Lal, Askari, and Red Kehsmesh, symptoms associated with GLRaV-3 were reduced growth with smaller leaves and shoots. By late summer, the leaves rolled downward and the interveinal areas of the leaves turned to red, while the principal veins remained green in cvs. Red Lal and Red Keshmesh. Symptoms associated with ArMV were reduced growth, shoots with short internodes, and leaf chlorosis and distortion. To our knowledge, this is the first report of ArMV and GLRaV-3 from grapevines in Iran. References: (1) A. Nassuth et al. J. Virol. Methods 90:37, 2000. (2) A. Rowhani et al. Plant Dis. 81:799, 1997.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 285-285 ◽  
Author(s):  
L. M. L. Duarte ◽  
M. A. V. Alexandre ◽  
D. Gobatto ◽  
E. W. Kitajima ◽  
R. Harakava

In November 2012, plants of Russell prairie gentian (Eustoma grandiflorum, Lisianthus russellianus) were collected from a commercial greenhouse in Atibaia, SP, Brazil, displaying necrotic spots on leaves and necrosis on stems, followed by generalized systemic necrosis. Disease symptom incidence was estimated at 10%. Preliminary electron microscopy observations of negatively stained leaf extracts prepared from those lesions revealed the presence of a large number of spherical tospovirus-like, approximately 100 nm in diameter. Samples of infected leaves were ground in 0.01 M phosphate buffer containing 0.5% sodium sulphide and mechanically inoculated in six plants of each species of Nicotiana glutinosa, N. tabacum cv. White Burley, N. megalosiphon, N. debneyii, Datura stramonium, Chenopodium amaranticolor, C. quinoa, and E. grandiflorum. All inoculated plants displayed local lesions 4 to 5 days after inoculation, while N. debneyii and D. stramonium showed systemic symptoms, typical of Tospovirus infection. In addition, E. grandiflorum reproduced the original symptoms. Total RNA was extracted from infected E. grandiflorum and D. stramonium, and reverse transcription (RT)-PCR was performed using universal primers BR60 and BR65 (2) targeting conserved regions of the nucleocapsid gene (N). The amplification products of approximately 450 bp were purified, cloned, and sequenced. The unknown virus was identified as Chrysanthemum stem necrosis virus (CSNV-Lis) based on host range and nucleotide sequence (Genbank Accession No. KC894721) and showed 99% identity with a CSNV chrysanthemum isolate from Japan (AB600872). Maximum likelihood phylogenetic analysis using nine homologous CSNV sequences available in GenBank classified CSNV-Lis into a monophyletic group formed by chrysanthemum isolates from Japan and China while a Japanese lisianthus isolate was separately clustered. CSNV is a member of the genus Tospovirus (Bunyaviridae) and was first reported on chrysanthemum in Brazil (1) and later in the Netherlands, Slovenia, United Kingdom, and Japan (3). Despite scattered recent reports of CSNV, the simultaneous production of chrysanthemum and lisianthus crops along the year by Brazilian farmers has contributed to the virus maintenance in the field. The high identity between Brazilian and Japanese isolates of CSNV suggest a possible reintroduction of the virus through exchange of vegetative propagating material. References: (1) L. M. L. Duarte et al. J. Phytopathol. 143:569, 1995. (2) M. Eiras et al. Fitopatol. Bras. 26:170, 2001. (3) K. Momonoi et al. J. Gen. Plant Pathol. 77:142, 2011.


Plant Disease ◽  
2004 ◽  
Vol 88 (1) ◽  
pp. 86-86 ◽  
Author(s):  
S. Kulshrestha ◽  
V. Hallan ◽  
G. Raikhy ◽  
R. Ram ◽  
A. A. Zaidi

Rose is an economically important crop of India and the world. A survey of rose plantations in and near the Kangra Valley of Himachal Pradesh, India, showed virus-like symptoms, including yellow flecking in young leaves and reduction in leaflet size, while some were symptomless. These symptoms are similar to those for Strawberry latent ringspot virus (SLRSV) (1). Sap inoculation from symptomatic and some symptomless leaves to Chenopodium amaranticolor resulted in chlorotic local lesions followed by systemic chlorosis. SLRSV was detected in this indicator host and six rose cultivars (Happiness, Iceberg, First Prize, Ganga, Pink Panther, and Oklahoma) showing characteristic symptoms of SLRSV using enzyme-linked immunosorbent assay (ELISA) with ELISA kit (DSMZ, Braunschweig, Germany). Reverse transcription-polymerase chain reaction was performed with SLRSV-specific primers (2), and a product of the expected size of ˜181 bp was amplified. The authenticity of the fragment was confirmed by sequencing. Isolated SLRSV was also inoculated to seed-grown rose seedlings and after 20 days postinoculation the same symptoms (yellow flecking in young leaves) were observed. These results established the identity of the virus that caused yellow flecking on rose leaves in India as SLRSV. To our knowledge, this is the first report of SLRSV infecting rose in India. References: (1) A. F. Murant. Strawberry latent ringspot virus. No. 126 in: Description of Plant Viruses, CMI/AAB, Surrey, U.K., 1974. (2) E. Bertolini et al. J. Virol. Methods 96:33, 2001.


2013 ◽  
Vol 61 (2) ◽  
pp. 161 ◽  
Author(s):  
Josh C. C. M. Van Vianen ◽  
Gary J. Houliston ◽  
John D. Fletcher ◽  
Peter B. Heenan ◽  
Hazel M. Chapman

To date, most research conducted on plant viruses has centred on agricultural systems where viruses greatly reduce economic output. Introduced viruses are globally common and there is a lack of knowledge around how they might affect natural populations. Although it has been suggested that infectious disease may have played an underestimated role in past species extinctions, there is little empirical evidence. Cook’s scurvy grass (Lepidium oleraceum Sparrm. ex G.Forst; Brassicaceae) is a threatened coastal plant endemic to New Zealand. Following the discovery of Turnip mosaic virus (TuMV) in some glasshouse cultivated specimens, we surveyed wild extant Lepidium populations on the Otago coast for TuMV while screening for two other common crop viruses. We show that TuMV is almost ubiquitous among remaining wild L. oleraceum populations on the South Island’s east coast and report the first record of L. oleraceum as a host for both Cauliflower mosaic virus and Turnip yellows virus. The high incidence of virus infection throughout the study populations may make this system one of the first examples of introduced viruses affecting the conservation of a threatened plant species.


2005 ◽  
Vol 79 (21) ◽  
pp. 13587-13593 ◽  
Author(s):  
Aranzazu Moreno ◽  
Eugénie Hébrard ◽  
Marilyne Uzest ◽  
Stéphane Blanc ◽  
Alberto Fereres

ABSTRACT Viruses frequently use insect vectors to effect rapid spread through host populations. In plant viruses, vector transmission is the major mode of transmission, used by nearly 80% of species described to date. Despite the importance of this phenomenon in epidemiology, the specificity of the virus-vector relationship is poorly understood at both the molecular and the evolutionary level, and very limited data are available on the precise viral protein motifs that control specificity. Here, using the aphid-transmitted Cauliflower mosaic virus (CaMV) as a biological model, we confirm that the “noncirculative” mode of transmission dominant in plant viruses (designated “mechanical vector transmission” in animal viruses) involves extremely specific virus-vector recognition, and we identify an amino acid position in the “helper component” (HC) protein of CaMV involved in such recognition. Site-directed mutagenesis revealed that changing the residue at this position can differentially affect transmission rates obtained with various aphid species, thus modifying the spectrum of vector species for CaMV. Most interestingly, in a virus line transmitted by a single vector species, we observed the rapid appearance of a spontaneous mutant specifically losing its transmissibility by another aphid species. Hence, in addition to the first identification of an HC motif directly involved in specific vector recognition, we demonstrate that change of a virus to a different vector species requires only a single mutation and can occur rapidly and spontaneously.


2002 ◽  
Vol 92 (8) ◽  
pp. 816-826 ◽  
Author(s):  
P. J. Hunter ◽  
J. E. Jones ◽  
J. A. Walsh

Experiments over two growing seasons clearly showed that Turnip mosaic virus (TuMV) infection was associated with internal necrosis (sunken necrotic spots 5 to 10 mm in diameter) and Beet western yellows virus (BWYV) infection was associated with collapse of leaf tissue at the margins (tipburn) in heads of stored white cabbage (Brassica oleracea var. capitata). Virtually no tipburn was seen in cv. Polinius, whereas cv. Impala was affected severely. Internal necrotic spots were seen in both cultivars. BWYV appeared to interact with TuMV. Plants infected with both viruses showed a lower incidence of external symptoms and had less internal necrosis than plants infected with TuMV alone. Cauliflower mosaic virus (CaMV) did not induce significant amounts of internal necrosis or tipburn, but did, in most cases, exacerbate symptoms caused by TuMV and BWYV. BWYV-induced tipburn worsened significantly during storage. Post-transplanting inoculation with TuMV induced more internal necrosis than pre-transplant inoculation. There was a significant association between detection of TuMV just prior to harvest and subsequent development of internal necrotic spots. Individually, all three viruses significantly reduced the yield of cv. Polinius, whereas only BWYV and CaMV treatments reduced the yield of cv. Impala.


2006 ◽  
Vol 84 (4) ◽  
pp. 565-571
Author(s):  
Julie Champagne ◽  
Denis Leclerc

The delivery of the double-stranded DNA viral genome into the nucleus is a critical step for the type member of Caulimoviridae, cauliflower mosaic virus (CaMV). The nucleocapsid (NC) of CaMV is directly involved in this process. A nuclear localization signal located at the N-terminus of the NC was shown to be exposed at the surface of the virion. This nuclear localization signal appears to be important to direct the virus to the nuclear pore complex. The nuclear targeting of the NC needs to be tightly regulated because the process of virus assembly, which also involves the viral NC, occurs in the cytosol. It is now accepted that the N- and C-terminal extensions of the viral NC precursor are efficient regulatory sequences that determine the localization of the viral NC in infected leaves. Proteolytic maturation and phosphorylation of the N- and C-terminal extensions are also important in the regulation of this process. Despite these recent discoveries, the transport of CaMV toward and into the nucleus during early events in the infection cycle remains unclear. In this review, we summarize recent advances that explain the mechanisms of targeting of the CaMV genome to the nucleus and extract from other related animal and plant viruses mechanisms that could hint at the possible strategies used by CaMV to enter the nucleus.


Sign in / Sign up

Export Citation Format

Share Document