scholarly journals A Method to Induce Stem Cankers by Inoculating Nonwounded Populus Clones with Septoria musiva Spore Suspensions

Plant Disease ◽  
2010 ◽  
Vol 94 (10) ◽  
pp. 1238-1242 ◽  
Author(s):  
Jared M. LeBoldus ◽  
Peter V. Blenis ◽  
Barb R. Thomas

Most artificial inoculations of Populus spp. stems with Septoria musiva have required host wounding to induce canker development; in the absence of wounds, frequencies of cankers have been low. Three greenhouse inoculation experiments were conducted to demonstrate the reliability and repeatability of an inoculation method that did not require wounding. In the first, 16 clones of hybrid poplar were inoculated with three isolates of S. musiva to compare responses following wounding and inoculation with mycelium (wound inoculation) with responses following inoculation of nonwounded trees by spraying with a conidial suspension (spray inoculation). Stem disease severity among clones following spray inoculation was correlated with stem disease severity following wound inoculation. A significant clone–isolate interaction was detected with spray inoculation but not wound inoculation. In the other two greenhouse experiments, 29 clones of hybrid poplar and 69 clones of Populus balsamifera were inoculated with a spore suspension mixture of three isolates. In both cases, the experimental error was similar to that obtained in previous experiments, in which trees were wound inoculated, and was adequately small to permit detection of differences in responses among clones. Ultimately, field studies will be needed to determine the best inoculation method for predicting stem responses to this pathogen under field conditions. However, relative to wound inoculation, spray inoculation of nonwounded trees has the advantage of yielding faster results, permitting inoculation with a mixture of isolates, and not circumventing potential mechanisms for resisting penetration. The ability to infect stems without wounding creates opportunities for numerous types of epidemiological and disease control studies that are difficult to conduct with wound inoculation.

1997 ◽  
Vol 87 (4) ◽  
pp. 381-388 ◽  
Author(s):  
D. L. Maxwell ◽  
E. L. Kruger ◽  
G. R. Stanosz

Septoria musiva causes leaf spot and canker diseases of trees in the genus Populus, and is one of the most damaging fungal pathogens of hybrid poplar in eastern North America. The effect of host water stress on Septoria canker development was studied in two separate greenhouse experiments. Hybrid poplar clones NM6, NC11396, and NE308 were stressed by withholding water until predawn water potential fell below −1.0 MPa. Stems were treated by removing a leaf and applying agar plugs that were either colonized by S. musiva (inoculated) or sterile (control) to the wound. Cankers on inoculated water-stressed trees were significantly larger than those on nonstressed trees. A leaf disk assay also was conducted three times with the NM6 and NE308 trees. We cut two disks from each of 120 stressed and 120 well-watered trees, placing them on water agar in 24-well tissue culture plates. A conidial suspension was applied to one disk in each pair and sterile water to the other. Inoculated disks from water-stressed trees developed less necrosis than those from well-watered trees. These results demonstrate that environmental influences on host condition must be considered in evaluating resistance of clones proposed for widespread culture of hybrid poplar.


Plant Disease ◽  
2009 ◽  
Vol 93 (11) ◽  
pp. 1146-1150 ◽  
Author(s):  
Jared M. LeBoldus ◽  
Peter V. Blenis ◽  
Barb R. Thomas ◽  
Nicolas Feau ◽  
Louis Bernier

A greenhouse inoculation experiment and field study were conducted to determine the cause of an outbreak of Septoria musiva cankers on Populus balsamifera in a northern Alberta plantation. Four clones of P. balsamifera, five clones of putatively resistant P. deltoides, and one susceptible hybrid poplar clone, Northwest, were inoculated with seven isolates identified as S. musiva. Four of the isolates were from P. balsamifera in Alberta and the others were from P. deltoides in Quebec. Results indicated that disease severity was similar for Alberta and Quebec isolates (P = 0.243) and that P. balsamifera had the greatest mean disease severity (x-bar = 4.20), P. deltoides had the lowest (x-bar = 2.76), and Northwest was intermediate (x-bar = 3.45). A genetic analysis comparing six polymorphic polymerase chain reaction restriction fragment length polymorphism loci and the mitochondrial small subunit ribosomal DNA sequences of the seven isolates indicated that the Alberta population was made up of at least three distinct genotypes. Canker incidence and age on Northwest and 56 different clones of P. balsamifera in a plantation were recorded. Canker incidence (P = 0.726) and the canker age distributions (P = 0.994) were similar for the two species. In conclusion, contrary to what has been reported in the literature, P. balsamifera appears to be quite susceptible to Septoria canker.


2018 ◽  
Vol 19 (1) ◽  
pp. 64-68
Author(s):  
Lina M. Rodriguez-Salamanca ◽  
Rachel P. Naegele ◽  
Lina M. Quesada-Ocampo ◽  
Mary K. Hausbeck

Leaf and neck anthracnose caused by Colletotrichum coccodes is a new disease of onion in Michigan. To test the effect of inoculation method, Prince onion seedlings were grown in the greenhouse and inoculated with either a conidial suspension of C. coccodes (alone or with an abrasive agent) or infested millet seed (dry or wet, 2 or 5 g). Foliar disease severity was greater when a conidial suspension (>39%) was used compared with infested millet seed (≤24.3%). Growth chamber studies were conducted using Infinity onion seedlings that were inoculated with a conidial suspension spray to determine the effects of temperature (15, 20, 25, or 30°C) and duration (0, 12, 24, 48, or 72 h) of high (95 ± 5%) relative humidity (RH) on disease severity (percentage of leaf area with C. coccodes lesions). Significant differences and interactions among temperature and RH were observed. The combination of high temperature (≥25°C) and extended (≥24 h) high RH resulted in >20% disease severity 28 days postinoculation. Results suggest that onion leaf and neck anthracnose symptoms are likely to be more severe when the environmental conditions are ≥25°C with ≥24 h of high RH.


2007 ◽  
Vol 85 (11) ◽  
pp. 1098-1102 ◽  
Author(s):  
Jared M. LeBoldus ◽  
Peter V. Blenis ◽  
Barb R. Thomas

Septoria musiva , the causal agent of Septoria canker, has caused widespread damage to plantations of hybrid poplar across North America. A greenhouse experiment was conducted to evaluate the size of interactions between the genotype factors of (i) clone, (ii) isolate, and (iii) the clone–isolate interaction and the environmental factor of water stress. Four clones of hybrid poplar were inoculated with four isolates of S. musiva and subsequently exposed to two levels of water stress (stressed and unstressed). Tree height, root collar diameter (RCD), and disease severity were measured 56 d after inoculation. Water stress reduced height and RCD growth by approximately 30% but did not affect disease severity (P = 0.258). Of the explained variability, 97.5% was attributable to genotype effects (89% from clone, 0% from isolate, and 8.5% from clone–isolate interaction). The remaining 2.5% of the variation was accounted for by the genotype – water stress interaction. These results suggest that clonal effects will be more important determinants of disease severity under greenhouse conditions than genotype – water stress interactions.


1999 ◽  
Vol 89 (11) ◽  
pp. 1066-1072 ◽  
Author(s):  
C. S. Kousik ◽  
D. F. Ritchie

Disease severity caused by races 1 through 6 of Xanthomonas campestris pv. vesicatoria on eight near-isogenic lines (isolines) of Early Calwonder (ECW) with three major resistance genes (Bs1, Bs2, and Bs3) in different combinations was evaluated in the greenhouse and field. Strains representing races 1, 3, 4, and 6 caused similar high levels of disease severity, followed by races 2 and 5 on susceptible ECW. Race 3 caused severe disease on all isolines lacking resistance gene Bs2. Race 4, which defeats Bs1 and Bs2, caused less disease on isoline ECW-12R (carries Bs1 + Bs2), than on isolines ECW, ECW-10R (carries Bs1), and ECW-20R (carries Bs2). Similar results were obtained with race 4 strains in field studies conducted during 1997 and 1998. In greenhouse studies, race 6, which defeats all three major genes, caused less disease on isoline ECW-13R (carries Bs1 + Bs3) and ECW-123R (carries Bs1 + Bs2 + Bs3) than on isolines ECW, ECW-10R, ECW-20R, and ECW-30R (carries Bs3), but not on ECW-23R (carries Bs2 + Bs3). In greenhouse studies with commercial hybrids, strains of races 4 and 6 caused less disease on Boynton Bell (carries Bs1 + Bs2) than on Camelot (carries no known resistance genes), King Arthur (carries Bs1), and X3R Camelot (carries Bs2). Race 6 caused less disease on hybrid R6015 (carries Bs1 + Bs2 + Bs3) and Sentinel (carries Bs1 + Bs3) than on Camelot. Residual effects were not as evident in field studies with race 6 strains. Defeated major resistance genes deployed in specific gene combinations (i.e., gene pyramids) were associated with less area under the disease progress curve than when genes were deployed individually in isolines of ECW or commercial hybrids. Successful management of bacterial spot of pepper is achieved incrementally by integrating multiple tactics. Although there is evidence of residual effects from defeated genes, these effects alone likely will not provide acceptable bacterial spot control in commercial production fields. However, when combined with sanitation practices and a judicious spray program, pyramids of defeated resistance genes may aid in reducing the risk of major losses due to bacterial spot.


Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 677-684 ◽  
Author(s):  
Krishna Ghimire ◽  
Kristina Petrović ◽  
Brian J. Kontz ◽  
Carl A. Bradley ◽  
Martin I. Chilvers ◽  
...  

One hundred fifty-two Diaporthe isolates were recovered from symptomatic soybean (Glycine max) stems sampled from the U.S. states of Iowa, Indiana, Kentucky, Michigan, and South Dakota. Using morphology and DNA sequencing, isolates were identified as D. aspalathi (8.6%), D. caulivora (24.3%), and D. longicolla (67.1%). Aggressiveness of five isolates each of the three pathogens was studied on cultivars Hawkeye (D. caulivora and D. longicolla) and Bragg (D. aspalathi) using toothpick, stem-wound, mycelium contact, and spore injection inoculation methods in the greenhouse. For D. aspalathi, methods significantly affected disease severity (P < 0.001) and pathogen recovery (P < 0.001). The relative treatment effects (RTE) of stem-wound and toothpick methods were significantly greater than for the other methods. For D. caulivora and D. longicolla, a significant isolate × method interaction affected disease severity (P < 0.05) and pathogen recovery (P < 0.001). Significant differences in RTEs were observed among D. caulivora and D. longicolla isolates only when the stem-wound and toothpick methods were used. Our study has determined that the stem-wound and toothpick methods are reliable to evaluate the three pathogens; however, the significant isolate × method interactions for D. caulivora and D. longicolla indicate that multiple isolates should also be considered for future pathogenicity studies.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ravi Bika ◽  
Warren Copes ◽  
Fulya Baysal-Gurel

Calonectria pseudonaviculata and Pseudonectria foliicola causing the infamous ‘boxwood blight’ and ‘Volutella blight’, respectively, are a constant threat to the boxwood production and cut boxwood greenery market. Both pathogens cause significant economic loss to all parties (growers, retailer, and customers) in the horticultural chain. The objective of this study was to evaluate efficacy of disinfesting chemicals [quaternary ammonium compound (QAC), peroxy, acid, alcohol, chlorine, cleaner] in preventing plant-to-plant transfer of C. pseudonaviculata and P. foliicola via cutting tools, as well as reduction of postharvest boxwood blight and Volutella blight disease severity in harvested boxwood greenery. First, an in vitro study was conducted to select products and doses that completely or near-completely inhibited conidial germination of C. pseudonaviculata and P. foliicola. The selected treatments were also tested for their ability to reduce plant-to-plant transfer of C. pseudonaviculata and P. foliicola and manage postharvest boxwood blight and Volutella blight in boxwood cuttings. For the plant-to-plant transfer study, Felco 19 shears were used as a tool for mechanical transfer of fungal conidia. The blades of Felco 19 shears were exposed to a conidial suspension of C. pseudonaviculata or P. foliicola by cutting a 1 cm diameter cotton roll that had been dipped into a fungal suspension. Disease-free boxwood rooted cuttings (10 cm height) were pruned with the contaminated shears. The Felco 19 shears were equipped with a mounted miniature sprayer connected to a pressurized reservoir of treatment solution that automatically sprayed the blade and plant surface while cutting. The influence of accumulated sap on the shear blade was studied through 1- or 10-cut pruning variable on test plants and screened for the efficacy of treatments. Then, the boxwood rooted cuttings were transplanted and incubated in room conditions (21 °C, 60% RH) with 12 h of fluorescent light; data evaluation on disease severity was done weekly for a month. Disease progress [area under disease progress curve (AUDPC)] was calculated. In another study, postharvest dip application treatments were used for the management of postharvest boxwood blight or Volutella blight on boxwood cuttings. The harvested boxwood cuttings were inoculated with a conidial suspension of C. pseudonaviculata or P. foliicola, then dipped into treatment solution 3 days afterwards. The treated boxwood cuttings were kept in room conditions, and boxwood blight or Volutella blight disease severity as well as marketability (postharvest shelf life) assessed every 2 days for 1 week. A significant difference between treatments was observed for reduction of boxwood blight or Volutella blight severity and AUDPC. The treatments (ODD + DoD + DdD + DB)AC [Simple Green D Pro 5], 2 propanol + DDAC (0.12%) [KleenGrow], and DBAC + DEAC [GreenShield] were the most effective in reducing the plant to plant transfer of boxwood blight and Volutella blight when pruned with contaminated Felco 19 shears. In addition to the three effective treatments above, acetic acid (2.5%) [Vinegar], 2-propanol + DDAC (0.06%), sodium hypochlorite (Clorox) and potassium peroxymonosulfate + NaCl (2%) [Virkon] were effective in reducing postharvest boxwood blight whereas DBAC + DBAC [Lysol all-purpose cleaner], ethanol [70% (Ethyl alcohol)] and DDAC +DBAC [Simple Green D Pro 3 plus] were effective in reducing Volutella blight disease severity and AUDPC, and also maintained better quality and longer postharvest shelf life of boxwood cuttings when applied as a dip treatment. The longer postharvest shelf life of boxwood cuttings noted may be attributed to reduced disease severity and AUDPC resulting in healthy boxwood cuttings.


2014 ◽  
Vol 40 (4) ◽  
pp. 307-312 ◽  
Author(s):  
Ana Raquel Soares-Colletti ◽  
Silvia de Afonseca Lourenço

The development of a large number of postharvest diseases is closely associated with fruit ripeness. Environmental conditions may affect both the pathogen development and the fruit ripening rate. The aim of this study was to determine the most favorable temperature and wetness duration to the development of anthracnose in guava fruits. Cultivars 'Kumagai' (white pulp) and 'Pedro Sato' (red pulp) were inoculated with a conidial suspension of Colletotrichum gloeosporioides and C. acutatum and incubated at constant temperature ranging from 10 to 35ºC and wetness duration of 6 and 24 hours. Disease severity and incidence were evaluated at every two days during 12 days. No infection occurred at 10 and 35ºC, regardless of the wetness duration. The optimum conditions for fruit infection were 26 and 27ºC for 'Kumagai' and 25 and 26ºC for 'Pedro Sato', adopting 24 hours of wetness. In general, the disease development in 'Kumagai' cultivar was more affected by the wetness period, compared to 'Pedro Sato'. Disease severity for 'Kumagai' fruits was maximal between 25 and 30ºC , depending on the Colletotrichum species. Regarding 'Pedro Sato', the mean diameter of lesions was greater in fruits stored at 20, 25 and 30ºC , compared to 'Kumagai' cultivar, depending on the wetness period and the species. The incubation period (between 6 and 7 days) and the latent period (between 8 and 10 days) were minimal at 30ºC. The data generated in this study will be useful either for the development of a disease warning system or for the increase in the shelf life of guavas in the postharvest.


HortScience ◽  
2018 ◽  
Vol 53 (7) ◽  
pp. 916-919
Author(s):  
Lina M. Rodríguez-Salamanca ◽  
Mary K. Hausbeck

Leaf and neck anthracnose is incited by Colletotrichum coccodes (Wallr.) Hughes, a new foliar disease of onion (Allium cepa L.) in Michigan that has been observed in the state since 2010. Symptoms include elliptical lesions on the leaves, necks, or both that appear bleached with a pale salmon to dark brown center. To develop an effective integrated disease management strategy, field studies were conducted in 2011 and 2012 to evaluate 16 commercial onion cultivars for their susceptibility to the pathogen. The incidence and severity of anthracnose were evaluated weekly following inoculation. Onion cultivars differed significantly in disease severity and incidence; differences between years were also observed. ‘Hendrix’ had the lowest disease severity, whereas ‘Highlander’ and ‘Candy’ exhibited severe onion leaf and neck anthracnose symptoms. Using less susceptible onion cultivars combined with effective fungicides against C. coccodes may limit crop losses for Michigan growers.


Plant Disease ◽  
2020 ◽  
Author(s):  
Tonima Islam ◽  
Cecil Vera ◽  
Jan Slaski ◽  
Ramona Mohr ◽  
Khalid Y Rashid ◽  
...  

Among the diseases that have the potential to cause damage to flax every year, pasmo, caused by Septoria linicola, is the most important. Fungicide application and a diverse crop rotation are the most important strategies to control this disease because there is little variation in resistance among flax cultivars. However, few fungicide products are available to flax growers. Field studies were conducted at four locations in Western Canada in 2014, 2015 and 2016 to determine the effect of two fungicide active ingredients applied singly and in combination: pyraclostrobin, fluxapyroxad and fluxapyroxad+pyraclostrobin; and two application timings (early-flower, mid-flower and at both stages) on pasmo severity, seed yield and quality of flaxseed. The results indicated that among the three fungicide treatments, both pyraclostrobin and fluxapyroxad+pyraclostrobin controlled pasmo effectively, however, fluxapyroxad+pyraclostrobin was the most beneficial to improve the quality and quantity of the seed at most of the site-years. Disease severity in the fungicide-free control was 70%, application of fluxapyroxad+pyraclostrobin decreased disease severity to 18%, followed by pyraclostrobin (23%) and fluxapyroxad (48%). Application of fluxapyroxad+pyraclostrobin also improved seed yield to 2562 kg ha-1 compared with 1874 kg ha-1 for the fungicide-free control, followed by pyraclostrobin (2391 kg ha-1) and fluxapyroxad (2340 kg ha-1). Fungicide application at early and mid-flowering stage had the same effects on disease severity and seed yield; however, seed quality was improved more when fungicide was applied at mid-flowering stage. Continuous use of the same fungicide may result in the development of fungicide insensitivity in the pathogen population. Thus, sensitivity of S. linicola isolates to pyraclostrobin and fluxapyroxad fungicides were determined by the spore germination and microtiter assay methods. Fungicide insensitivity was not detected among the 73 isolates of S. linicola tested against either of these fungicides.


Sign in / Sign up

Export Citation Format

Share Document