scholarly journals First Report of Foliar Infection of Cabbage by Phytophthora drechsleri in Argentina

Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1830-1830
Author(s):  
M. J. Iribarren ◽  
B. A. González ◽  
M. L. Velez ◽  
A. Greslebin ◽  
M. Steciow

Cabbage (Brassica oleracea var. capitata L.) is a popular crop grown along the northeast horticultural belt of Buenos Aires Province, Argentina. In the summer of 2010, fields in this region remained flooded for long periods due to frequent and intense precipitation (560 mm from January to March). Commercial cabbage crops in the cities of Luján and General Rodríguez developed patches of diseased plants that were stunted and wilted. Affected plants had necrotic areas in the crowns and roots. Symptoms expanded to the upper stems, leaving vascular tissues exposed. During April 2010, samples from 2 fields were brought to the laboratory where the stems were washed thoroughly and disinfected with a 1% bleach solution for 2 minutes. Small pieces (5 mm in diameter) were removed from the lesion edge, plated on V8 agar (V8A) plates, and incubated at 24°C in the dark for 5 days. Four isolates were transferred to V8A using hyphal tips. Morphological studies were performed on the V8A cultures as well as plates flooded with tap water. Sporangia were obpyriform, nonpapillate, persistent, and variable in size, averaging 44 × 28 μm. Each isolate belonged to the A1 mating type when paired with P. capsici tester isolates, CBS 370.72 and CBS 111.334 (Fungal Biodiversity Centre, CBS, Utrecht, the Netherlands). The isolates produced amphigynous antheridia, and chlamydospores were present but scarce. Maximum temperatures for growth (37°C) were also performed. Edited sequences of the internal transcribed spacer (ITS) region of the rDNA (GenBank Accession Nos. JQ653300, JQ653301, JQ653302, and JQ653303) were compared with Phytophthora sequences available in GenBank using the BLASTN search utility (1) and aligned to the data set of Cooke et al. (2). Sequences of the four isolates (strains 2: R-cai-cuello-col-3, 3: R-cai-cuello-col-18, 4: R-AN-col-1A and 5: R-AN-col-1B) matched 100% with GenBank sequences of P. drechsleri (100% coverage, 100% identity and no gaps). Based on these results, the four Argentinian cabbage isolates were identified as P. drechsleri (3). Pathogenicity tests were completed using three detached heads of mature cabbage plants (B. oleracea var. capitata) for each isolate. A 5-mm colonized mycelial plug of the appropriate isolate was placed on the main vein of the outermost leaves. For the control treatments, three heads were inoculated with non-colonized V8A plugs. The inoculated and control heads of cabbage were incubated in plastic boxes wrapped in black nylon bags at 24°C for 4 days. Broccoli (B. oleracea var. italica) and cauliflower (B. oleracea var. botrytis) were also tested following the same procedure. All heads of cabbage, broccoli, and cauliflower developed necrotic lesions 2 to 4 cm in diameter and a dark grey color. Control heads of each plant remained green. P. dreschleri was consistently reisolated as described above from the inoculated heads, but not from the control heads. To our knowledge, this is the first report of cabbage as a host for P. dreschleri in Argentina. Frezzi (4) reported this species as a pathogen of Chrysanthemum cinerariefolium, Celosia plumosa, Schinus molle, and Solanum lycopersicum in Argentina in 1950. References: (1) S. S. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. E. L. Cooke et al. Fungal Gen. Biol. 30:17, 2000. (3) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society Press, St. Paul, MN, 1996. (4) M. J. Frezzi. Rev. Invest. Agric. Buenos Aires 4:49, 1950.

2016 ◽  
Vol 53 (1) ◽  
pp. 81-86 ◽  
Author(s):  
N. P. Scioscia ◽  
P. M. Beldomenico ◽  
G. M. Denegri

SummaryThe present study reports the first case of infection by Pterygodermatites affinis in Lycalopex gymnocercus, and the first report of this nematode in Argentina. Examining 80 foxes from Buenos Aires province, specimens of this species were recovered from 21.25 % of the small intestines and eggs were found in 7.5 % of the fecal samples.


Plant Disease ◽  
2021 ◽  
Author(s):  
Francisco Beluzán ◽  
Diego Olmo ◽  
Maela León ◽  
Paloma Abad-Campos ◽  
Josep Armengol

Nectarine (Prunus persica (L.) Batsch var. nucipersica (Suckow) C. K. Schneid.) is a fruit crop widely cultivated throughout the Mediterranean basin. In Spain, it is mainly grown in eastern regions of the country. In March 2018, 5-year-old nectarine trees showing twig canker symptoms were observed after a rainy spring period in a 0.5 ha orchard located at Alaior, Menorca island (Spain). Cankers were frequent on affected trees (approximately, 80% of the total trees), thus leading to shoot blight. Ten twig segments of one-year old wood with cankers were cut, washed under running tap water, surface disinfected for 1 min in a 1.5% sodium hypochlorite solution and rinsed twice in sterile distilled water. Small pieces (2 mm) of affected tissues were taken from the margin of the cankers and plated on potato dextrose agar (PDA) supplemented with 0.5 g/L of streptomycin sulphate (PDAS). The plates were then incubated at 25 ºC in the dark for 7 to 10 d. Actively growing colonies were first hyphal-tipped and then transferred to PDA and 2% water agar supplemented with sterile pine needles and incubated at 21-22ºC under a 12h/12h near UV / darkness cycle during 21 d (León et al. 2020). Colonies were white at first, becoming light cream, with visible solitary and aggregate pycnidia at maturity. Alpha conidia were aseptate, fusiform, hyaline, multi-guttulated (mean ± SD = 7.4 ± 0.7 × 2.8 ± 0.4 µm, n = 100). Beta and gamma conidia were not observed. The morphological and cultural characteristics of the isolates were congruent with those of Diaporthe spp. (Gomes et al. 2013). The ITS1-5.8S-ITS2 (ITS) region and fragments of β-tubulin (tub2), the translation elongation factor 1-alpha (tef1-α) gene regions, histone H3 (his3) and calmodulin (cal) genes of representative isolate DAL-59 were amplified and sequenced (Santos et al. 2017). The BLASTn analysis revealed 100% similarity with sequences of D. mediterranea (Synonym D. amygdali) (Hilário et al. 2021) isolate DAL-34 from almond (ITS: MT007489, tub2: MT006686, tef1-α: MT006989, his3: MT007095 and cal: MT006761). Sequences of isolate DAL-59 were deposited in GenBank Database (ITS: MT007491, tub2: MT006688, tef1-α: MT006991, his3: MT007097 and cal: MT006763). Pathogenicity tests were conducted using one-year-old potted plants of nectarine cv. Boreal, which were inoculated with isolate DAL-59. In each plant, a 3 mm wound was made in the center of the main branch (about 30 cm length) with a scalpel. Colonized agar plugs with 3 mm diameter, which were obtained from active 10-day-old colonies growing on PDA, were inserted underneath the epidermis and the wounds sealed with Parafilm. Inoculated plants were incubated in a growth chamber at 23 ºC with 12 h of light per day. Controls were inoculated with uncolonized PDA plugs. There were twelve plants per treatment, which were arranged in a completely randomized design. Five days after inoculation necrosis development was observed in the area of inoculation. Wilting and twig blight symptoms over the lesion occurred 3-wk after inoculation and pycnidia were detected, while the controls remained asymptomatic. Diaporthe amygdali was re-isolated from symptomatic tissues and identified as described above to satisfy Koch’s postulates. To our knowledge, this is the first report of D. amygdali causing twig canker and shoot blight disease on nectarine in Spain.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1478-1478 ◽  
Author(s):  
B. A. Pérez ◽  
M. F. Berretta ◽  
E. Carrión ◽  
E. R. Wright

In 2009, a highbush blueberry (Vaccinium corymbosum L. ‘O'Neal’) field located in Rojas, Buenos Aires Province showed 30% of plants with dry or dead branches. Disinfected root pieces were placed on water agar and incubated at 24°C. A fungal colony was obtained and purified by successive transfers of an individual hyphal tip from a sparsely growing colony. Colony color and growth rate were evaluated in potato dextrose agar where the fungus produced white-to-pale pink colonies and grew 3.5 cm after 5 days. The fungus was studied on Spezieller Nährstoffarmer agar (2), carnation leaf-piece agar, and KCl agar where it produced abundant single-celled hyaline microconidia in moderate-length chains and in false heads originated from monophialides and polyphialides. Microconidia measured 6 to 12 × 2 to 3 μm (average 8 × 2.3 μm). On KCl, chains of microconidia and tan-to-light cream sporodochia with 3- to 5-septate, slender, relatively straight macroconidia were easily observed after 4 and 10 days, respectively. Macroconidia measured 38 to 48 × 3.5 to 4 μm (average 43.9 × 3.9 μm). Chlamydospores and sclerotia were not present. Data coincided with the description for Fusarium proliferatum (Matsush.) Niremberg ex Gerlach & Niremberg. The isolate was deposited in the IMYZA Microbial Collection as INTA-IMC 144. The fungus was cultured in 100 ml of Czapek-Dox supplemented with sucrose, peptone, yeast extract, sodium nitrate, and vitamins for 4 days. Genomic DNA was obtained with a DNA extraction kit, PCR amplified with primers ITS1 and ITS4 for the internal transcribed spacer (ITS) region of ribosomal genes, and sequenced. The nucleotide sequence (Accession No JF913468) was compared with GenBank records. The sequence shared 99% identity with Accession No HQ113948 for F. proliferatum. Pathogenicity was confirmed in 1-year-old ‘O'Neal’ plants. A 10-ml suspension (2.4 × 106 conidia/ml in sterile distilled water) was applied to six potted plants grown in sterilized potting mix. Roots were superficially wounded with a needle. Control plants were treated with sterile distilled water. Plants were incubated at 24°C and a 12-h photoperiod. After 90 days, plants showed root rot, leaf chlorosis, and branch necrosis followed by plant death. Control plants remained healthy. F. proliferatum was reisolated from diseased roots of inoculated plants. This fungus was previously cited in Argentina on asparagus (1), corn (1,3), and oat (4). To our knowledge, this is the first report of F. proliferatum as a root pathogen of highbush blueberry in Argentina. References: (1) G. Lori et al. Plant Dis. 82:1405, 1998. (2) H. I. Nirenberg. Releases Fed. Biol. Res. Ctr. Agric. For. (Berlin-Dahlem) 169:1, 1976. (3) D. A. Sampietro et al. Fung. Biol. 114:74, 2010. (4) S. A. Stenglein et al. Plant Dis. 94:783, 2010.


Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 160-160 ◽  
Author(s):  
F. M. Mathew ◽  
K. Y. Rashid ◽  
T. J. Gulya ◽  
S. G. Markell

During September 2012, Phomopsis stem canker was observed on sunflowers (Helianthus annuus L.) in a production field during seed filling with an average incidence of 15% in Morden, Manitoba (approximately 49°11′N and 98°09′W). The infected plants had elongated, brown-black lesions surrounding the leaf petiole, with numerous pycnidia, pith damage, and mid-stem lodging. Twenty sunflower plants were randomly sampled from the field. Isolations were made from the margins of the necrotic stems lesions by plating small pieces (5 mm) on potato dextrose agar (PDA) amended with 0.02% streptomycin sulfate. Plates were incubated at 25°C for 14 days under a 12-h photoperiod, and hyphal tips of white to grey colonies were transferred to PDA. Five isolates producing black pycnidia (occasionally with ostiolate beaks) and alpha conidia were tentatively identified as a Diaporthe sp. Alpha conidia were ellipsoidal, hyaline, and 6.5 to 8.5 × 2.5 to 3.5 μm. DNA was extracted from the mycelium of five isolates, and the ITS region was amplified and sequenced using primers ITS5 and ITS4 (4). BLASTn analysis of the 600-bp fragment (GenBank Accession Nos. KM391960 to KM391964) showed that the best match was Phomopsis sp. AJY-2011a strain T12505G (Diaporthe gulyae R.G. Shivas, S.M. Thompson & A.J. Young [3], Accession No. JF431299) from H. annuus with identities = 540/540 (100%) and gaps = 0/540 (0%). The five D. gulyae isolates were tested for pathogenicity on a sunflower confection inbred cv. HA 288 using the stem-wound method (2). Four-week-old sunflower plants (10 plants per isolate) were inoculated by wounding the stems on the second internode with a micropipette tip and placing a Diaporthe-infested mycelial plug on the wound. All plugs were attached to the wound with Parafilm. The pots were placed on the greenhouse benches at 25°C under a 16-h light/dark cycle. At 3 days after inoculation, dark brown lesions were observed on the stems extending upward from the inoculation site. Stem and leaves wilted, causing plant death 14 days after inoculation. Disease severity was calculated as a percentage of stem lesion (lesion length/stem length × 100%) at 14 days after inoculation. Significant differences (P ≤ 0.05) in disease severity were observed among D. gulyae isolates, which ranged from 34.9 to 100.0% (n = 5). Ten control plants similarly treated with sterile PDA plugs did not display symptoms. To complete Koch's postulates, D. gulyae was re-isolated from the inoculated stems, and the pathogen's identity was confirmed via sequencing of the ITS regions using primers ITS5 and ITS4 (4). The pathogen was not isolated from the control plants. D. gulyae was first reported as a pathogen on H. annuus in Australia and United States in 2011 (1,3). The pathogen was determined to be as or more aggressive than the other causal agents of Phomopsis stem canker (2,3), and its identification in both countries was circumstantially associated with increased incidence and yield loss in commercial production fields (1,3). In Canada, Phomopsis stem canker has been observed in sunflower fields over the last 10 years at low incidences, especially in years with above-normal temperatures during the sunflower growing season; however, the causal agent was not confirmed. To the best of our knowledge, this is the first report of D. gulyae causing Phomopsis stem canker on sunflowers in Canada. Since there is currently no known resistance to D. gulyae in sunflower, this newly discovered pathogen may become a threat to sunflower production in Canada. References: (1) F. Mathew et al. Phytopathology 101:S115, 2011. (2) F. Mathew et al. Phytopathology 103:S2.91, 2013. (3) S. M. Thompson et al. Persoonia 27:80, 2011. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


2010 ◽  
Vol 30 (1) ◽  
pp. 63-66 ◽  
Author(s):  
Germán Cantón ◽  
Carlos Campero ◽  
Matías Villa ◽  
Ernesto Odriozola

Phalaris angusta is a South American natural grass that produces poisoning in sheep and cattle in Argentina and Brazil. Phalaris spp. can produce unrelated forms of poisoning in ruminants, acute and chronic syndromes. The objective of this paper was to describe an outbreak of acute and chronic Phalaris nervous syndrome in 53 of 980 fattening steers and heifers in a farm of Buenos Aires province. On September of 2006 the animals developed nervous signs and died after 3-5 days. The herd was removed to a phalarisfree pasture. Three months later (on December) 15 new clinical cases developed in the herd. Necropsy performed in one affected calf showed neither grossly nor microscopic changes. Microscopically, there were no major alterations in tissues. Nervous signs had been described in some field cases where neither pigment deposition nor axonal degeneration could be detected. Clinical findings displayed by affected cattle after consumption of Phalaris angusta pastures resemble those observed by other authors in Phalaris staggers. This is the first report in Argentina where both syndromes were seen in the same herd.


Plant Disease ◽  
2007 ◽  
Vol 91 (4) ◽  
pp. 459-459 ◽  
Author(s):  
C. Saude ◽  
M. K. Hausbeck ◽  
O. Hurtado-Gonzales ◽  
C. Rippetoe ◽  
K. H. Lamour

In the fall of 2005, processing carrot fields in Mason, Newaygo, and Oceana counties, Michigan, were surveyed for Phytophthora spp. Carrot roots were sampled from areas of fields that exhibited patches of chlorotic, blighted, or wilted foliage. Dark brown, firm, water-soaked lesions occurred near the middle and crown areas of diseased carrot roots. In the advanced stages of disease, carrot root tissue readily collapsed and a soft rot developed while petioles turned black. The internal portions of the diseased carrot roots were brown and rubbery. Roots with these symptoms are not suitable for processing. Carrot roots were washed with tap water and the tissue excised from the edge of developing lesions and plated aseptically onto BARP-amended (25 ppm of benomyl, 100 ppm of ampicillin, 30 ppm of rifampicin, and 100 ppm of pentachloronitrobenzene) regular V8 juice agar. Plates were incubated at 23 to 25°C for 7 days. Phytophthora sp. was isolated from carrot root samples from all surveyed areas. Ten representative single-sporangium isolates cultured on dilute V8 juice agar were examined for morphological characteristics. The homothallic Phytophthora sp. isolates produced papillate, obpyriform, caducous sporangia (35.0 to 45.2 × 26.2 to 33.2 μm) with 1 to 3 μm long pedicels, plerotic oospores (27.0 to 32.0 μm in diameter) with paragynous antheridia, and primarily terminally produced chlamydospores that were 30.0 to 40.0 μm in diameter. Radial growth on V8 juice agar was observed at temperatures between 10 and 30°C with optimum growth at 25°C and no growth at 5 and 35°C. Pathogenicity of the 10 isolates was tested by inoculating three of each wounded and nonwounded carrot roots with a 7-mm mycelial plug from the edge of actively growing 5-day-old cultures. Inoculated carrot roots were incubated for 7 days in a moist chamber at 23 to 25°C. Symptoms developed 3 to 7 days after inoculation, with non-wounded roots exhibiting firm, dark brown, water-soaked lesions and wounded roots exhibiting soft rot with dark brown margins. The Phytophthora sp. was always isolated from the inoculated roots. Controls remained healthy and no pathogen was isolated from these roots. On the basis of the morphological and physiological characteristics, the Phytophthora sp. isolated was identified as Phytophthora cactorum ((Lebert & Cohn) J. Schrot.) (2). Identity of these isolates was confirmed by sequencing of the internal transcriber spacers (ITS). Amplified fragment length polymorphism (AFLP) profiles for 37 isolates were >83% similar, which is expected for conspecific isolates. The ITS sequences from six representative isolates were identical and shared 100% homology to P. cactorum (GenBank Accession No. AF266772) isolated from Rubus idaeus (1). The consensus ITS sequence was deposited in NCBI (Accession No. EF052680). P. cactorum was reported in New York on field and stored carrot roots in 1952 (3), but to our knowledge, this is the first report in Michigan. Finding of P. cactorum on carrot roots represents a new and significant threat to the Michigan processing carrot industry, which ranks fourth in the United States. References: (1) D. E. L. Cooke et al. Fungal Gen. Biol. 30:17, 2000. (2) D. C. Erwin and O. K. Ribeiro. Phytophthora Disease Worldwide. The American Phytopathological Society. St. Paul, MN, 1996. (3) W. E. Rader. N Y State (Cornell) Agr. Exp. Stn. Bull. 889:5, 1952.


Plant Disease ◽  
2001 ◽  
Vol 85 (1) ◽  
pp. 96-96 ◽  
Author(s):  
E. R. Wright ◽  
P. E. Grijalba ◽  
L. Gasoni

Root and basal stem rot, blighting, and wilting have been observed on Epipremnum aureum (Linden ex André) plants in many nurseries in and near Buenos Aires since 1997. Infected stem tissues show an intense dark brown discoloration and water soaking near the stem base that eventually leads to plant death. To determine the causal agent of the disease, small pieces of diseased tissue were surface-sterilized for 2 min in 2% sodium hypochlorite and plated on potato-dextrose agar (PDA). Whitish colonies that eventually turned brown developed in 2 to 3 days at 22 to 24°C. Irregularly shaped sclerotia were observed. Isolates typical of Rhizoctonia solani Kuhn exhibited mycelia with branches inclined in the direction of growth, constricted at the point of union with the main hyphae, with a septum in the branch near the constriction. No telemorph was observed. Nuclei in living hyphal mats were stained directly on a microscope slide coated with water agar according to the method of Tu and Kimbrough (4) and were examined at 400× magnification. The cells were multinucleate. Anastomosis group was determined by using known tester isolates of Rhizoctonia spp. (3). Positive anastomosis was observed with tester strains of AG-4 HG-II. The polymerase chain reaction was performed according to the protocol of Boysen et al (1) in order to confirm the anastomosis group. Primers used for the amplification of the ITS region were ITSI and LROR. Amplification of the ITS region indicated lack of variation with AG-4 tester strain. The pathogenicity of the isolate was determined with the inoculum-layer technique (2), consisting of a 7-day-old petri plate culture of the pathogen in PDA that is removed from the dish and placed intact on the soil, 2 to 4 cm under the roots of 10 healthy plants. Some leaves of the plants were placed in contact with the inoculated substratum. For a control, PDA was placed under the roots of other plants. Plants were maintained at 22 to 24°C, with close-to-saturation humidity. After 6 to 10 days, symptoms were similar to those previously observed. Initially leaves that had been placed in contact with the substratum showed dark areas with a watersoaked area 2 to 3 cm in diameter. These lesions expanded over the entire leaf blade moving into the petioles and stems killing the plant. One hundred percent of inoculated plants were infected. Koch's postulates were satisfied after reisolating the fungus. The characteristics of the causal agent are those of multinucleate isolates of R. solani belonging to the anastomosis group AG-4 HG-II (3). This is the first report of R. solani causing disease on E. aureum in Argentina. References: (1) M. Boysen, M. Borja, C. Del Corral, O. Salazar, and V. Rubio. Curr. Genet. 29:174–181, 1996. (2) A. F. Schmitthenner and J. W. Hilty. Phytopathology 52:177–178, 1962. (3) B. Sneh, L. Burpee, and A. Ogoshi. 1991. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN. (4) C. C. Tu and J. W. Kimbrough. Mycologia 65:941–944, 1973.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 446-446 ◽  
Author(s):  
M. Carranza ◽  
S. Larran ◽  
H. Alippi

In 1999, downy mildew was detected on artichoke (Cynara scolymus L.) plants from La Plata, Buenos Aires Province. The disease was observed on various commercial varieties. Symptoms were angular interveinal chlorotic spots less than 3 cm in size. These infected areas, although not confluent, covered a wide surface and caused early death of the leaves. On the undersides of these lesions, white-grayish sporulation was abundant, consisting of sporangiophores with dichotomous branches, widened in their peaks with 2 to 7 terminal sterigmata. Sporangia were ellipsoidal, hyaline and 14 to 30 × 12 to 25 μm in size. Oospores were not observed in leaf tissues. The pathogen was identified as Bremia lactucae Regel (1). Pathogenicity was confirmed with the inoculation of healthy artichoke plants. They were incubated in a humidity chamber at 10 to 15°C, and after 16 days chlorotic spots and downy mildew colonies developed. The presence of B. lactucae was confirmed by macro- and microscopic observation and Koch's postulates were fulfilled. This is the first report of downy mildew on artichoke in Argentina. Because it is widespread in the most important artichoke-growing area in Argentina (2), downy mildew should be considered in the cultural and sanitary management of the crop. References: (1) P. Corda. Hypermedia Prot. Plantes, INRA, 1995. (2) A. Ricceti et al. Bol. Hortic. 4:4, 1996.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 917-917 ◽  
Author(s):  
Z. Y. Wang ◽  
S. N. Xie ◽  
Y. Wang ◽  
H. Y. Wu ◽  
M. Zhang

Cynodon dactylon is widely cultivated as a sod crop in warm climates worldwide. In early September 2009, heavy leaf spot infection was observed on C. dactylon from Zhengzhou, Henan, China. Early symptoms appeared as small, elliptical, pale brown lesions on the leaves. Lesions later expanded to 5 to 10 mm long and 1 to 2 mm wide, becoming brown to dark brown. A fungus was consistently isolated from leaf spots on potato dextrose agar (PDA), but with poor sporulation. Morphological characteristics were observed from single-conidium cultures on tap water agar + wheat straw (TWA+W) after 5 to 7 days. Conidiophores were light to medium brown, cylindrical, solitary or clustered, unbranched, usually with basal cells enlarged, and 94.5 to 147.0 × 4.0 to 9.0 μm. Conidia were fusoid, strongly curved, end cells broadly hemiellipsoidal, brown, 58.5 to 84.5 × 13.5 to 18.5 μm, with 6 to 10 septa. These morphological characteristics are similar to those of Bipolaris peregianensis (2). The identity of our fungus was confirmed to be B. peregianensis by DNA sequencing of the internal transcribed spacer (ITS) region (GenBank Accession No. JQ316121), which was 99% homologous to those of other B. peregianensis isolates (= Cochliobolus peregianensis; Accession Nos AF071328 and AF158111) (1). Koch's postulates were performed with the leaves of three pots of C. dactylon. Leaves were sprayed with 1 × 105 conidia/ml of B. peregianensis; an equal number of leaves in the pots of the same plant sprayed with sterile distilled water served as the control. All test plants were covered with plastic bags for 24 h to maintain high relative humidity at 23 to 25°C. After 7 days, more than 50% of inoculated leaves showed symptoms identical to those observed in natural condition, whereas controls remained symptom free. Reisolation of the fungus from lesions on inoculated leaves confirmed that the causal agent was B. peregianensis. To our knowledge, this is the first report of leaf spots caused by B. peregianensis on C. dactylon in China. The disease cycle and the control strategies in the regions are being further studied. References: (1) M. L. Berbee et al. Mycologia 91:964, 1999. (2) A. Sivanesan. Mycol. Pap. 158:1, 1987.


Plant Disease ◽  
2000 ◽  
Vol 84 (9) ◽  
pp. 1044-1044
Author(s):  
S. Wolcan ◽  
L. Ronco

In 1995, powdery mildew was observed on commercial greenhousegrown Aster ericoides L. from La Plata, Buenos Aires Province. The disease affected about 95% of the growers. Mildew first appeared as white circular patches on the adaxial surface of leaves. As disease progressed, the abaxial surface of leaves, petioles, stems, and calyces were covered by cottony masses of mycelium and conidia, and basal leaves later wilted and died. Young plants (4 to 5 leaves) through flowering plants were affected. Conidia were ovoid-cylindrical, often slightly constricted at the ends, and were produced in chains on unbranched conidiophores. Conidia lacked fibrosin bodies and ranged from 30 to 41 μm × 10 to 19 μm. Long unbranched germ tubes were formed from the ends of conidia. The morphological characteristics of the fungus fit those described for Erysiphe cichoracearum DC (1). In addition, the perfect stage was found on older tissues. Subglobose, dark brown cleistothecia (105 to 210 μm in diameter) with a basal ring of myceloid appendages were observed. Cleistothecia contained multiple ellipsoid asci (48 to 69 μm × 30 to 37 μm) with two hyaline, one-celled, ellipsoid ascospores (22 to 26 μm × 11 to 15 μm). Pathogenicity was tested by pressing diseased leaves onto healthy leaves of aster cv. Sunset and incubating plants in humidity chambers for 48 h. The powdery mildew that developed was morphologically identical to the original isolate. This is the first report of E. cichoracearum on heath aster in Argentina. Reference: (1) H. J. Boesewinkel. Bot. Rev. 46:167, 1980.


Sign in / Sign up

Export Citation Format

Share Document