scholarly journals First Report of Mango Dieback Caused by Pseudofusicoccum stromaticum in Brazil

Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 144-144 ◽  
Author(s):  
M. W. Marques ◽  
N. B. Lima ◽  
S. J. Michereff ◽  
M. P. S. Câmara ◽  
C. R. B. Souza

From September to December 2010, mango (Mangifera indica L.) stems showing dieback symptoms were collected during a survey conducted in São Francisco Valley, northeastern Brazil. Small pieces (4 to 5 mm) of necrotic tissues were surface sterilized for 1 min in 1.5% NaOCl, washed twice with sterile distilled water, and plated onto potato dextrose agar (PDA) amended with 0.5 g liter–1 streptomycin sulfate. Plates were incubated at 25°C in the dark for 14 to 21 days and colonies that were morphologically similar to species of Botryosphaeriaceae were transferred to PDA. Colonies developed a compact mycelium that was initially white, but becoming gray dark after 4 to 6 days of incubation at 25°C in darkness. Identification was made using morphological characteristics and DNA based molecular techniques. Pycnidia were obtained on 2% water agar with sterilized pine needles as substratum after 3 weeks of incubation at 25°C under near-UV light. Pycnidia were large, multilocular, eustromatic, covered with hyphae; locule totally embedded without ostioles, locule walls consisting of a dark brown textura angularis, becoming thinner and hyaline toward the conidiogenous region. Conidia were hyaline, thin to slightly thickened walled, aseptate, with granular contents, bacilliform, straight to slightly curved, apex and base both bluntly rounded or just blunt, 15.6 to 25.0 (20.8) μm long, and 2.7 to 7.9 (5.2) μm wide, length/width = 4.00. According to these morphological characteristics, three isolates (CMM1364, CMM1365, and CMM1450) were identified as Pseudofusicoccum stromaticum (1,3,4). PCR amplification by universal primers (ITS4/ITS5) and DNA sequencing of the internal transcribed spacer (ITS1-5.8S-ITS2 rRNA gene cluster) were conducted to confirm the identifications through BLAST searches in GenBank. The isolates were 100% homologous with P. stromaticum (3) (GenBank Accession Nos. AY693974 and DQ436935). Representative sequences of the isolates were deposited in GenBank (Accession Nos. JF896432, JF966392, and JF966393). Pathogenicity tests were conducted with the P. stromaticum strains on 5-month-old mango seedlings (cv. Tommy Atkins). Mycelial plugs taken from the margin of actively growing colonies (PDA) of each isolate were applied in shallow wounds (0.4 cm in diameter) on the stem (center) of each plant. Inoculation wounds were wrapped with Parafilm. Control seedlings received sterile PDA plugs. Inoculated and control seedlings (five each) were kept in a greenhouse at 25 to 30°C. After 5 weeks, all inoculated seedlings showed leaf wilting, drying out of the branches, and necrotic lesions in the stems. No symptoms were observed in the control plants. P. stromaticum was successfully reisolated from symptomatic plants to fulfill Koch's postulates. P. stromaticum was described from Acacia, Eucalyptus, and Pinus trees in Venezuela (3,4), and there are no reports of this fungus in other hosts (2). To our knowledge, this is the first report of P. stromaticum causing mango dieback in Brazil and worldwide. References: (1) P. W. Crous et al. Stud. Mycol. 55:235, 2006. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , 18 May 2011. (3) S. Mohali et al. Mycol. Res. 110:405, 2006. (4) S. R. Mohali et al. Fungal Divers. 25:103, 2007.

Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1248-1248 ◽  
Author(s):  
N. B. Lima ◽  
M. W. Marques ◽  
S. J. Michereff ◽  
M. A. Morais ◽  
M. A. G. Barbosa ◽  
...  

From April to June 2010, mango fruits (Mangifera indica L.) (cv. Tommy Atkins) showing post-harvest anthracnose symptoms were collected during a survey conducted in São Francisco Valley, northeastern Brazil. Fruits affected by anthracnose showed sunken, prominent, dark brown to black decay spots. Small pieces (4 to 5 mm) of necrotic tissues were surface sterilized for 1 min in 1.5% NaOCl, washed twice with sterile distilled water, and plated onto potato dextrose agar (PDA) amended with 0.5 g liter–1 streptomycin sulfate. Plates were incubated at 25°C in the dark for 5 to 7 days and colonies that were morphologically similar to species of Colletotrichum were transferred to PDA (1). Identification was made using morphological characteristics and phylogenetic analysis. Two isolates (CMM 4101 and CMM 4102) presented colonies that had white aerial mycelia and orange conidial mass, varying between colorless and pale orange in reverse. Conidia were hyaline, cylindrical, and aseptate 14.52 (10.40 to 20.20) μm long and 4.90 (3.80 to 6.50) μm wide, length/width ratio = 3.0. Mycelial growth rate was 5.20 mm per day at 25°C. Morphological and cultural characterizations were consistent with the description of Colletotrichum karstii (3). PCR amplification by universal primers (ITS1/ITS4) and DNA sequencing of the internal transcribed spacer (ITS1-5.8S-ITS2 rRNA gene cluster) were conducted to confirm the identifications. Analysis of representative sequences (GenBank Accession Nos. HM585409 and HM585406) suggested that the isolated pathogen was C. karstii. Using published ITS data for C. karstii (3), a phylogenetic analysis was made via Bayesian inference, which shows that the isolated fungi belong to the C. karstii clade. Sequences of the isolates obtained in this study were deposited in GenBank (KC295235 and KC295236), and cultures were deposited in the Culture Collection of Phytopathogenic Fungi of the Universidade Federal Rural de Pernambuco (CMM, Recife, Brazil). Pathogenicity tests were conducted with the C. karstii strains on mango fruits cv. Tommy Atkins. Mycelial plugs taken from the margin of actively growing colonies (PDA) of each isolate were applied in shallow wounds (0.4 cm in diameter) at the medium region of the each fruit. PDA discs without fungal growing were used as controls. Inoculated fruits were placed in plastic containers lined with paper towels wetted in distilled water. The containers were partially sealed with plastic bags to maintain high humidity and incubated at 25°C in the dark. The plastic bags and paper towels were removed after 24 h, and fruits were kept at the same temperature. The experiment was arranged in a completely randomized design with four replicates per treatment (isolate) and four fruits per replicate. Typical anthracnose symptoms were observed after 10 days in mango fruits. C. karstii was successfully reisolated from symptomatic mango fruits to fulfill Koch's postulates. C. karstii was previously described from Orchidaceae in southwest China and the United States (2,3). To our knowledge, this is the first report of C. karstii causing mango anthracnose in Brazil and worldwide. References: (1) U. Damm et al. Stud. Mycol. 73:1, 2012. (2) I. Jadrane et al. Plant Dis. 96:1227, 2012. (3) Yang et al. Cryptogamie Mycol. 32:229, 2011.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 140-140 ◽  
Author(s):  
K. C. Correia ◽  
B. O. Souza ◽  
M. P. S. Câmara ◽  
S. J. Michereff

In October 2010, 2-year-old papaya (cv. Hawaii) trees with high incidence of stem rot were observed during a survey conducted in Rio Grande do Norte state, northeastern Brazil. Stems showing reddish brown-to-dark brown symptoms were collected and small pieces (4 to 5 mm) of necrotic tissues were surface sterilized for 1 min in 1.5% NaOCl, washed twice with sterile distilled water, and plated onto potato dextrose agar (PDA) amended with 0.5 g liter–1 streptomycin sulfate. Plates were incubated at 25°C with a 12-h photopheriod for 4 days. Pure cultures with white, fluffy aerial mycelia were obtained by subculturing hyphal tips onto PDA. Identification was made using morphological characteristics and DNA based molecular techniques. Colonies grown on PDA and Spezieller Nährstoffarmer agar (SNA) for 10 days at 25°C with a 12-h photoperiod were used for morphological identification (3). The fungus produced cream sporodochia and two types of spores: microconidia were thin-walled, hyaline, ovoid, one-celled, and 6.8 to 14.6 × 2.3 to 4.2 μm; macroconidia were thick walled, hyaline, slightly curved, 3- to 5-celled, and 25.8 to 53.1 × 3.9 to 5.7 μm. Fifty spores of each type were measured. Rounded, thick-walled chlamydospores were produced, with two to four arranged together. On the basis of morphological characteristics (1), three fungal isolates (CMM-3825, CMM-3826, and CMM-3827) were identified as Fusarium solani (Mart.) Sacc. and were deposited in the Culture Collection of Phytopathogenic Fungi of the Universidade Federal Rural de Pernambuco (Recife, Brazil). Single-spore isolates were obtained and genomic DNA of the isolates was extracted and a portion of the translation elongation factor 1-alpha (EF1-α) gene of the isolates was amplified and sequenced (2). When compared with sequences available in the GenBank and Fusarium-ID databases, DNA sequences of the three isolates shared 99 to 100% sequence identity with F. solani species complex (GenBank Accession Nos. JF740784.1, DQ247523.1, and DQ247017.1). Representative sequences of the isolates were deposited in GenBank (Accession Nos. JQ808499, JQ808500, and JQ808501). Pathogenicity tests were conducted with four isolates on 3-month-old papaya (cv. Hawaii) seedlings. Mycelial plugs taken from the margin of actively growing colonies (PDA) of each isolate were applied in shallow wounds (0.4 cm in diameter) on the stem (center) of each plant. Inoculation wounds were wrapped with Parafilm. Control seedlings received sterile PDA plugs. Inoculated and control seedlings (10 each) were kept in a greenhouse at 25 to 30°C. After 2 weeks, all inoculated seedlings showed reddish brown necrotic lesions in the stems. No symptoms were observed in the control plants. The pathogen was successfully reisolated from symptomatic plants to fulfill Koch's postulates. To our knowledge, this is the first report of F. solani species complex causing papaya stem rot in Brazil. Papaya is an important fruit crop in the northeastern Brazil and the occurrence of this disease needs to be taken into account in papaya production. References: (1) C. Booth. Fusarium Laboratory Guide to the Identification of the Major Species. CMI, Kew, England, 1977. (2) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1252-1252 ◽  
Author(s):  
C. Zhang ◽  
W. Zhang ◽  
H. Q. Ma ◽  
G. Z. Zhang

Fresh fig (Ficus carica L.) has been grown on a large scale in Beijing, China, since 2011. In late July 2012, a rot disease occurred on immature fruit of fig after a heavy rain (average daily rainfall 170 mm) in Fangshan District, Beijing, which caused about 30% incidence of green fruit on trees. The symptom first appeared as a water-soaked lesion that was covered with a white, fluffy mass of mycelia, followed by a soft, mushy rot of infected area on the fruit. To isolate the causal agent, mycelia and sporangia from 10 symptomatic fruits were suspended in sterile water, spread on potato dextrose agar (PDA) plates, and incubated at 25°C for 18 h. The isolates from each diseased fruit showed the same colonial characteristics. A single sporangium was isolated under a dissecting microscope and transferred onto PDA to obtain a pure culture. On carrot agar, the colony was white and homogeneous with tidy edge, with a few aerial hyphae. Sporangia were obpyriform with obvious papillae and measured 54.7 to 63.8 (59.3) × 26.5 to 36.3 (30.7) μm. The chlamydospores produced in culture were spherical. The pathogen was identified as Phytophthora palmivora based on the morphological characteristics (3) and confirmed with ITS sequences by PCR amplification using rDNA universal primers ITS1 and ITS4. The resulting sequence (Accession No. KC131229) had a 99% identity to that of P. palmivora (JQ354937) isolated from Pachira aquatica. Koch's postulates were conducted by inoculating six surface-sterilized figs with a PDA plug from a 7-day-old culture, with six noninoculated (PDA plugs only) fruits serving as controls. The inoculated fruits were incubated at room temperature in a plastic box covered with film. Symptoms similar to those on the naturally infected fruits began on wounded fruits 48 h after inoculation and on non-wounded fruits 60 h after inoculation, while the six control fruits remained healthy. P. palmivora was reisolated from the symptomatic fruit tissue. P. palmivora is one of the most severe pathogens on edible figs, being reported by Japanese in 1941 (2). Fruit rot of fig caused by the pathogen was reported in Florida in 1984 (1). To our knowledge, this is the first report of P. palmivora leading to fruit rot on fig in China. References: (1) N. E. El-Gholl and S. A. Alfieri, Jr. Proc. Fla. State Hort. Soc. 97:327, 1984. (2) Y. Nisikado et al. Ber. Ohara Inst. 8:427, 1941. (3) Y. N. Yu. Flora Fungorum Sinicorum: Peronosporales (in Chinese) Vol. 6. Science Press, Beijing, 1998.


Plant Disease ◽  
2021 ◽  
Author(s):  
Charles Krasnow ◽  
Nancy Rechcigl ◽  
Jennifer Olson ◽  
Linus Schmitz ◽  
Steven N. Jeffers

Chrysanthemum (Chrysanthemum × morifolium) plants exhibiting stem and foliage blight were observed in a commercial nursery in eastern Oklahoma in June 2019. Disease symptoms were observed on ~10% of plants during a period of frequent rain and high temperatures (26-36°C). Dark brown lesions girdled the stems of symptomatic plants and leaves were wilted and necrotic. The crown and roots were asymptomatic and not discolored. A species of Phytophthora was consistently isolated from the stems of diseased plants on selective V8 agar (Lamour and Hausbeck 2000). The Phytophthora sp. produced ellipsoid to obpyriform sporangia that were non-papillate and persistent on V8 agar plugs submerged in distilled water for 8 h. Sporangia formed on long sporangiophores and measured 50.5 (45-60) × 29.8 (25-35) µm. Oospores and chlamydospores were not formed by individual isolates. Mycelium growth was present at 35°C. Isolates were tentatively identified as P. drechsleri using morphological characteristics and growth at 35°C (Erwin and Ribeiro 1996). DNA was extracted from mycelium of four isolates, and the internal transcribed spacer (ITS) region was amplified using universal primers ITS 4 and ITS 6. The PCR product was sequenced and a BLASTn search showed 100% sequence similarity to P. drechsleri (GenBank Accession Nos. KJ755118 and GU111625), a common species of Phytophthora that has been observed on ornamental and vegetable crops in the U.S. (Erwin and Ribeiro 1996). The gene sequences for each isolate were deposited in GenBank (accession Nos. MW315961, MW315962, MW315963, and MW315964). These four isolates were paired with known A1 and A2 isolates on super clarified V8 agar (Jeffers 2015), and all four were mating type A1. They also were sensitive to the fungicide mefenoxam at 100 ppm (Olson et al. 2013). To confirm pathogenicity, 4-week-old ‘Brandi Burgundy’ chrysanthemum plants were grown in 10-cm pots containing a peat potting medium. Plants (n = 7) were atomized with 1 ml of zoospore suspension containing 5 × 103 zoospores of each isolate. Control plants received sterile water. Plants were maintained at 100% RH for 24 h and then placed in a protected shade-structure where temperatures ranged from 19-32°C. All plants displayed symptoms of stem and foliage blight in 2-3 days. Symptoms that developed on infected plants were similar to those observed in the nursery. Several inoculated plants died, but stem blight, dieback, and foliar wilt were primarily observed. Disease severity averaged 50-60% on inoculated plants 15 days after inoculation. Control plants did not develop symptoms. The pathogen was consistently isolated from stems of symptomatic plants and verified as P. drechsleri based on morphology. The pathogenicity test was repeated with similar results. P. drechsleri has a broad host range (Erwin and Ribeiro 1996; Farr et al. 2021), including green beans (Phaseolus vulgaris), which are susceptible to seedling blight and pod rot in eastern Oklahoma. Previously, P. drechsleri has been reported on chrysanthemums in Argentina (Frezzi 1950), Pennsylvania (Molnar et al. 2020), and South Carolina (Camacho 2009). Chrysanthemums are widely grown in nurseries in the Midwest and other regions of the USA for local and national markets. This is the first report of P. drechsleri causing stem and foliage blight on chrysanthemum species in the United States. Identifying sources of primary inoculum may be necessary to limit economic loss from P. drechsleri.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Qing Qu ◽  
Liu Shiwei ◽  
Ning Liu ◽  
Yunxia Liu ◽  
Jia Hui ◽  
...  

Abelmoschus manihot (Linn. ) Medicus (A. manihot) is an annual to perennial herb of the Malvaceae okra, mainly distributed in Guangdong, Guangxi, Fujian, Hunan, Hubei provinces. It can not only be used as an ornamental flower, but also has important economic and medicinal value. Last year, 10% A. manihot in 1,000 acres were observed with stalk rot in the Zhongshang Agricultural Industrial Park, 50 meters east of Provincial Highway 235 in Gaoyang County of Hebei province. Internal discoloration of the stem began brown to black discoloration of the vascular system and became hollow, with the mycelium growing on the surface. Stems from symptomatic plants (approximately 5 mm2) were dissected, washed free of soil, then soaked in 75% ethanol for 16 s to surface-sterilize, and 40 s in HgCl2, then rinsed three times in sterile water. After being dried with blotting paper, five pieces were placed on potato dextrose agar (PDA). After cultured 2 or 3 days, five isolates were purified and re-cultured on PDA in the dark at 25°C. The color of the colony was white. The hyphae were radial in PDA, and the aerial hyphae were flocculent, well-developed with luxuriant branches. The colonies were white and floccus, and the aerial hyphae were well developed, branched and without septum on corn meal agar (CMA). The sporangia were large or petal shaped, composed of irregular hyphae, terminal or intermediate , with the size of (31.6-88.4) μm ×(12.7- 14.6) μm. Vesicles were spherical, terminal or intermediate, ranging from 14.6 to 18.5μm. Oogonia were globose, terminal and smooth which stipe was straight. Antheridia were clavate or baggy and mostly intercalary, sometimes terminal. Oospores were aplerotic, 21.5 to 30.0 μm in diameter, 1.6 to 3.1 μm in wall thickness. The isolates morphological characteristics were consistent with P. aphanidermatum (van der Plaats-Niterink 1981, Wu et al. 2021 ). To identify the isolates, universal primers ITS1/ITS4 (White et al. 1993) were used for polymerase chain reaction–based molecular identification. The amplification region was sequenced by Sangon Biotech (Shanghai, China) and submitted to GenBank (MW819983). BLAST analysis showed that the sequence was 100% identical to Pythium aphanidermatum. Pathogenicity tests were conducted 3 times, with 4 treatments and 2 controls each time. The plants treated were 6 months old. Then the hyphae growing on PDA for 7 days were cut into four pieces. Next, they were inoculated into the soil of the A. manihot. Negative control was inoculated only with PDA for 7 days ( Zhang et al. 2000). The plants were then placed in a greenhouse under 28°C, 90% relative humidity. After inoculated 20 to 30 days, the infected plants showed stalk rot, the same symptoms as observed on the original plants. The control plants didn’t display symptoms. Pythium aphanidermatum was re-isolated from infected stems and showed the same characteristics as described above and was identical in appearance to the isolates used to inoculate the plants. To our knowledge, this is the first report of Pythium aphanidermatum infecting A. manihot stem and causing stalk rot in China. It may become a significant problem for A. manihot. Preliminary management practices are needed for reducing the cost and losses of production.


HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1266-1270 ◽  
Author(s):  
Nader R. Abdelsalam ◽  
Hayssam M. Ali ◽  
Mohamed Z.M. Salem ◽  
Elsayed G. Ibrahem ◽  
Mohamed S. Elshikh

Mango (Mangifera indica L.) is a fruit crops belong to the family Anacardiaceae and is the oldest cultivated tree worldwide. Cultivars maintained in Egypt have not been investigated previously. Mango was first brought to Egypt from South Asia. Morphological and molecular techniques were used to identify the genetic diversity within 28 mango cultivars. SSR and EST-SSR were used for optimizing germplasm management of mango cultivars. Significant variations were observed in morphological characteristics and genetic polymorphism, as they ranged from 0.71% to 100%. High diversity was confirmed as a pattern of morphological and genotypes data. Data from the present study may be used to calculate the mango relationship and diversity currently grown in Egypt.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 687-687 ◽  
Author(s):  
L. Ren ◽  
X. P. Fang ◽  
C. C. Sun ◽  
K. R. Chen ◽  
F. Liu ◽  
...  

Shepherd's purse (Capsella bursa-pastoris (L.) Medicus) is an edible and wild medicinal plant widely distributed in China. This plant has been cultivated in Shanghai, China, since the end of the 19th century. Infection of C. bursa-pastoris by Plasmodiophora brassicae, the causal agent of clubroot disease on Brassica spp. has been reported in Korea (2), but is not known to occur in China. In February of 2011, stunted and wilted shepherd's purse (SP) plants were observed in a field planted to oilseed rapes (B. napus) in Sichuan Province of China. Symptomatic SP plants also exhibited root galls. Disease incidence was 6.2% and 100% for SP and B. napus, respectively. Root galls on diseased SP plants were collected for pathogen identification. Many resting spores were observed when the root galls were examined under a light microscope. The resting spores were circular in shape, measuring 2.0 to 3.1 μm in diameter (average 2.6 μm). PCR amplification was conducted to confirm the pathogen. DNA was extracted from root galls and healthy roots (control) of SP. Two primers, TC2F (5′-AAACAACGAGTCAGCTTGAATGCTAGTGTG-3′) and TC2R (5′-CTTTAGTTGTGTTTCGGCTAGGATGGTTCG-3′) were used to detect P. brassicae (1). No PCR amplifications were observed with the control DNA as template. A fragment of the expected size (approximately 520 bp) was obtained when DNA was amplified from diseased roots of SP. These results suggest that the pathogen in the galled roots of SP is P. brassicae. Pathogenicity of P. brassicae in SP was tested on plants of both SP and Chinese cabbage (CC) (B. campestris ssp. pekinensis). A resting spore suspension prepared from naturally infected SP roots was mixed with a sterilized soil in two plastic pots, resulting in a final concentration of 5 × 106 spores/g soil. Soil treated with the same volume of sterile water was used as a control. Seeds of SP and CC were pre-germinated on moist filter paper for 2 days (20°C) and seeded into the infested and control pots, one seed per pot for planted for CC and four seeds per pot for SP. The pots were placed in a chamber at 15 to 25°C under 12 h light and 12 h dark. Plants in each pot were uprooted after 4 weeks and the roots of each plant were washed under tap water and rated for clubroot disease. No disease symptoms were observed in the control treatments of SP or CC. Plants of both species showed symptoms of clubroot, with the disease incidence of 62.5% and 100% on SP and CC, respectively. The pathogen was isolated from diseased roots of each plant and confirmed as P. brassicae based on morphological characteristics and PCR detection. To our knowledge, this is the first report of clubroot disease on C. bursa-pastoris in Sichuan Province of China. This finding suggests that it may be necessary to manage C. bursa-pastoris in cruciferous vegetable (cabbage, turnip) and oilseed rape production fields. References: (1) T. Cao et al. Plant Dis. 91:80, 2007. (2) W. G. Kim et al. Microbiology 39:233, 2011.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 380-380 ◽  
Author(s):  
L. Baeza-Montañez ◽  
R. Gómez-Cabrera ◽  
M. D. García-Pedrajas

Verticillium wilt, primarily caused by Verticillium dahliae Klebahn and V. albo-atrum Reinke & Berthold, affects a wide range of economically important crops. This disease is an increasing problem in areas where young mango trees are planted on land previously planted in vegetable crops. In 2008, symptoms of Verticillium wilt were observed in mango cvs. Kent and Osteen in the subtropical fruit-producing area of Málaga in southern Spain. In a new mango grove of cv. Kent, previously planted in potatoes and tomatoes, ~20% of 200 1-year-old trees had one-sided branch dieback. In many of these trees the symptoms expanded, leading to decline and eventual death. Cross sections of affected branches revealed brown vascular discoloration. Verticillium was isolated from surface-sterilized segments of symptomatic branches placed on acidic potato dextrose agar (PDA). Plates were incubated at 24°C. After 3 days, slow-growing colonies were transferred to PDA. Verticillium was similarly isolated from symptomatic potato plants grown in a nearby field. Identification of V. dahliae was initially based on morphology and further confirmed by molecular methods. All isolates tested produced microsclerotia, a defining feature that distinguishes V. dahliae from V. albo-atrum. For molecular characterization, V. dahliae specific primers 19 and 22 (1) and universal primers ITS1 and ITS4, which amplify the rRNA internal transcribed spacer (ITS) region (4), were used. Bands of expected size were amplified with both primer combinations. ITS fragments were sequenced and identical to the V. dahliae reference sequence (GenBank AY555948) (3). Pathogenicity assays were conducted with a selected isolate from mango using tomato plants from the susceptible line ‘Moneymaker’ and the near isogenic ‘Motabo’ line carrying the Ve gene conferring resistance to race 1 isolates. Five 1-month-old plants (four-leaf stage) were inoculated by root immersion in a suspension of 107 conidia/ml. Five control plants were mock inoculated with distilled water. As a positive control, five plants were inoculated with the previously described race 1 strain Dvd-T5 (2), which induces severe symptoms in susceptible tomato cultivars. Symptoms were scored visually at various time points up to 40 days by a 0 to 5 scale in which 0 = negligible chlorosis or wilting, 1 = chlorosis and wilting and/or curling in individual leaves, 2 = necrosis in leaves, 3 = at least one branch dead, 4 = wilt and/or chlorosis in upper leaves and/or two or more branches dead, and 5 = plant dead or all leaves and most of stem necrotic. The isolate from mango caused typical Verticillium wilt symptoms with a mean disease rating of 3.6 at 40 days postinoculation in both lines. The mean disease rating for Dvd-T5 in Moneymaker 40 days postinoculation was 4.0. V. dahliae was reisolated from symptomatic plants but not from noninoculated controls. To our knowledge, this is the first report of Verticillium wilt on mango in Spain. More problems with Verticillium wilt are expected because of the increasing planting of mango in fields previously dedicated to horticultural crops. References: (1) J. H. Carder et al. Modern Assays for Plant Pathogenic Fungi: Identification, Detection and Quantification. CAB International, Oxford, 1994. (2) K. F. Dobinson et al. Can. J. Plant. Pathol. 18:55, 1996. (3) M. P. Pantou et al. Mycol. Res. 109:889, 2005. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Amplification. Academic Press, San Diego, 1990.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1228-1228 ◽  
Author(s):  
M. P. You ◽  
V. Lanoiselet ◽  
C. P. Wang ◽  
R. G. Shivas ◽  
Y. P. Li ◽  
...  

Commercial rice crops (Oryza sativa L.) have been recently reintroduced to the Ord River Irrigation Area in northern Western Australia. In early August 2011, unusual leaf spot symptoms were observed by a local rice grower on rice cultivar Quest. A leaf spot symptom initially appeared as grey-green and/or water soaked with a darker green border and then expanded rapidly to several centimeters in length and became light tan in color with a distinct necrotic border. Isolations from typical leaf lesions were made onto water agar, subcultured onto potato dextrose agar, and maintained at 20°C. A representative culture was lodged in the Western Australian Culture Collection Herbarium, Department of Agriculture and Food Western Australia (WAC 13466) and as a herbarium specimen in the Plant Pathology Herbarium, Plant Biosecurity Science (BRIP 54721). Amplification of the internal transcribed spacer (ITS)1 and (ITS)2 regions flanking the 5.8S rRNA gene were carried out with universal primers ITS1 and ITS4 (4). The PCR products were sequenced and BLAST analyses used to compare sequences with those in GenBank. The sequence had 99% nucleotide identity with the corresponding sequence in GenBank for Magnaporthe oryzae B.C. Couch, the causal agent of rice blast, the most important fungal disease of rice worldwide (1). Additional sequencing with the primers Bt1a/Bt1b for the β-tubulin gene, primers ACT-512F/ACT-783R for the actin gene, and primers CAL-228F/CAL-737R for the calmodulin gene showed 100% identity in each case with M. oryzae sequences in GenBank, confirming molecular similarity with other reports, e.g., (1). The relevant sequence information for a representative isolate has been lodged in GenBank (GenBank Accession Nos. JQ911754 for (ITS) 1 and 2; JX014265 for β-tubulin; JX035809 for actin; and JX035808 for calmodulin). Isolates also showed morphological similarity with M. oryzae as described in other reports, e.g., (3). Spores of M. oryzae were produced on rice agar under “black light” at 21°C for 4 weeks. Under 30/28°C (day/night), 14/12 h (light/dark), rice cv. Quest was grown for 7 weeks, and inoculated by spraying a suspension 5 × 105 spores/ml onto foliage until runoff occurred. Inoculated plants were placed under a dark plastic covering for 72 h to maximize humidity levels around leaves, and subsequently maintained under >90% RH conditions. Typical symptoms of rice blast appeared within 14 days of inoculation and were as described above. Infection studies were successfully repeated and M. oryzae was readily reisolated from leaf lesions. No disease symptoms were observed nor was M. oryzae isolated from water-inoculated control rice plants. There have been previous records of rice blast in the Northern Territory (2) and Queensland, Australia (Australian Plant Pest Database), but this is the first report of M. oryzae in Western Australia, where it could potentially be destructive if conditions prove conducive. References: (1) B. C. Couch and L. M. Kohn. Mycologia 94:683, 2002; (2) J. B. Heaton. The Aust. J. Sci. 27:81, 1964; (3) C. V. Subramanian. IMI Descriptions of Fungi and Bacteria No 169, Pyricularia oryzae, 1968; (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, New York, 1990.


Sign in / Sign up

Export Citation Format

Share Document