scholarly journals First report of Diplodia mutila causing leaf blight on Magnolia grandiflora in China

Plant Disease ◽  
2022 ◽  
Author(s):  
Xiaosheng Zhao ◽  
Chaorong Meng ◽  
Xiang-Yu Zeng ◽  
Zaifu Yang ◽  
Xue-Jun Pan

Magnolia grandiflora is a widely cultivated ornamental tree in China. In June 2020, a leaf blight disease was observed on M. grandiflora in Guizhou University (26° 44' 57'' N, 106° 65' 94'' E) in Guiyang, China. The initial symptoms on leaves were expanding round necrotic lesions with a grey center and dark brown edge, and twigs were withered when the disease was serious. Of the 100 plants surveyed 65% had symptoms. To isolate the potential causal pathogen, diseased leaves were collected from an M. grandiflora tree at Guizhou University. Isolations from made form the junction between healthy and symptomatic tissue and disinfested by immersing in 75% ethanol for 30 seconds, 3% NaOCl for 2 minutes, and then washed 3 times in sterile distilled water. Symptomatic tissue was then plated on potato dextrose agar (PDA) and incubated at 25ºC with 12-hour light for 3–5 days. Three isolates (GUCC 21235.1, GUCC 21235.2 and GUCC 21235.3) were obtained. Colonies on PDA after 7 d were dark brown, pycnidia embedded in the mydelium were dark brown to black, single and separated. Conidiophores were transparent measuring 7–12.5 × 2.5–4.5 µm (mean = 9.5 × 3.6 µm, n = 30) in length. Conidia were transparent becoming brown when mature with a diaphragm, with round ends measuring, 21–27 × 10–15 µm (mean = 23.6 × 12.6 µm, n = 30). To confirm the pathogen by molecular characterization, four genes or DNA fragments, ITS, LSU, tef1 and β-tubulin, were amplified using the following primer pairs: ITS4-F/ ITS5-R (White et al., 1990), LR0R/ LR5 (Rehner & Samuels, 1994), EF1-688F/ EF1-986R (Carbone & Kohn, 1999) and Bt2a/ Bt2b (O'Donnell & Cigelnik, 1997). The sequences of four PCR fragments of GUCC 21235.1 were deposited in GenBank, and the accession numbers were MZ519778 (ITS), MZ520367 (LSU), MZ508428 (tef1) and MZ542354 (β-tubulin). Bayesian inference was performed based on a concatenated dataset of ITS, LSU, tef1 and β-tubulin gene using MrBayes 3.2.10, and the isolates GUCC 21235.1 formed a single clade with the reference isolates of Diplodia mutila (Diplodia mutila strain CBS 112553). BLASTn analysis indicated that the sequences of ITS, LSU, tef1 and β-tubulin revealed 100% (546/546 nucleotides), 99.82% (568/569 nucleotides), 100% (302/302 nucleotides), and 100% (437/437 nucleotides) similarity with that of D. mutila in GenBank (AY259093, AY928049, AY573219 and DQ458850), respectively. For confirmation of the pathogenicity of this fungus, a conidial suspension (1×105 conidia mL-1) was prepared from GUCC 21235.1, and healthy leaves of M. grandiflora trees were surface-disinfested by 75% ethanol, rinsed with sterilized distilled water and dried by absorbent paper. Small pieces of filter paper (5 mm ×5 mm), dipped with 20 µL conidial suspension (1×105 conidia mL-1) or sterilized distilled water (as control), were placed on the bottom-left of the leaves for inoculation. Then the leaves were sprayed with sterile distilled water, wrapped with a plastic film and tin foil successively to maintain high humidity in the dark dark. After 36 h, the plastic film and tin foil on the leaves was removed, and the leaves were sprayed with distilled water three times each day at natural condition (average temperature was about 25 °C, 14 h light/10 h dark). After 10 days of inoculation, the same leaf blight began to appear on the leaves inoculated with conidial suspension. No lesion was appeared on the control leaves. The fungus was re-isolated from the symptomatic tissue. Based on the morphological information and molecular characterization, the isolate GUCC 21235.1 is D. mutila. Previous reports indicated that D. mutila infects a broad host range and gives rise to a canker disease of olive, apple and jujube (Úrbez-Torres et al., 2013; Úrbez-Torres et al., 2016; Feng et al., 2019). This is the first report of leaf blight on M. grandiflora caused by D. mutila in China.

Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 838-838 ◽  
Author(s):  
V. Gupta ◽  
V. K. Razdan ◽  
D. John ◽  
B. C. Sharma

In India, rice (Oryza sativa L.) plays a major role in national food security, with total production of 102.75 million t, harvested from 44 million ha during 2011 (1). Weeds are one of the major causes of losses in rice. Cyperus iria, locally known as chatriwala dela (rice flat sedge), is an annual weed in the Cyperaceae that can reach 50 to 60 cm tall. A leaf blight of C. iria was observed during August 2010 in a 20-ha rice field (cv. Basmati 370) at the University Research Farm, Chatha, Jammu (32° 43′ N, 74° 54′ E). Symptomatic plants were scattered randomly in the field and had water-soaked spots on the upper leaf surfaces initially, which turned brown after 4 days and developed a yellow halo, resulting in a blighted appearance. The diseased leaves shriveled and infected plants died. Infected C. iria leaf pieces with adjacent healthy tissue were collected, surface-sterilized in 0.1% mercuric chloride for 20 s, then rinsed three times in sterilized distilled water. The pieces were plated onto potato dextrose agar (PDA) and incubated at 27 ± 1°C for 4 days. A pure fungal culture was obtained by single-spore technique on 2% water agar and maintained on PDA at 10°C. The fungus initially produced white mycelium that became brown with age. Dark brown spots or flecks of pigment formed in the agar. Macroconidia were long and slender, with tapered apical cells that were elongated or even whip-like. Basal cells of macroconidia were prominent, foot shaped, and elongated. Macroconidia were 39.55 to 56.74 × 3.75 to 4.5 μm with 3 to 5 septa. Conidiophores were compact, penicillately branched, and arose from lateral branches which initially were one-celled and bore 2 to 4 phialides at the apex. Chlamydospores were intercalary, solitary, in chains or in knots, globose, and 7 to 9 μm in diameter. On the basis of morphological characteristics (2), the fungus was identified as Fusarium equiseti (Corda) Sacc. and deposited in the Indian Type Culture Collection, New Delhi (8424.11). The ITS (internal transcribed spacer) region of rDNA was amplified by PCR with primers ITS1/ITS2 and sequenced. BLASTn analysis of the sequence showed 100% homology with the ITS sequence of F. equiseti in the NCBI database (JN596252.1), and the sequence was deposited in GenBank (KC434458). To confirm pathogenicity of the F. equiseti isolate, 10 seeds of C. iria were planted in five clay pots (each 38 cm in diameter) filled with sterilized soil. Three seedlings were used for the experiment and the remaining seedlings removed from each pot. A total of 15 seedlings (5 pots × 3 seedlings per pot) at the two-leaf stage were spray-inoculated with a 50-ml conidial suspension of the isolate (105 cfu/ml) using a hand atomizer. The control treatment included three seedlings treated similarly with sterile distilled water. The spore suspension was prepared in potato dextrose broth using a culture of the fungus incubated for 10 days and then homogenized at 140 rpm. Tween 20 (1%) was added to the spore suspension. Small spots developed 4 days after inoculation, and the lesions then coalesced into large necrotic areas, resulting in leaf blight 10 days after inoculation. F. equiseti was reisolated from inoculated leaves using the method described above, whereas no fungus was reisolated from control plants, fulfilling Koch's postulates. The isolated fungus displayed the same morphological and cultural features as the original isolate. F. equiseti has been reported to infect Echinochloa spp. in Iran (3), but to our knowledge, this is the first report of F. equiseti infecting C. iria in India. Thus, F. equiseti represents a potential biocontrol agent for managing C. iria in rice fields. References: (1) Anonymous. Direct. Rice Res. Newslett. 10:2, 2012. (2) C. Booth. The Genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey, England, p. 157, 1971. (3) M. R. S. Motlagh. Austral. J. Crop Sci. 4:457, 2010.


Plant Disease ◽  
2021 ◽  
Author(s):  
Azim Syahmi Zafri ◽  
Rita Muhamad ◽  
Aswad Wahab ◽  
Anis Syahirah Mokhtar ◽  
Erneeza Mohd Hata

Weeds may act as inoculum reservoirs for fungal pathogens that could affect other economically important crops (Karimi et al. 2019). In February 2019, leaves of the ubiquitous invasive weed, Parthenium hysterophorus L. (parthenium weed) exhibiting symptom of blight were observed at Ladang Infoternak Sg. Siput (U), a state–owned livestock center in Perak, Malaysia. Symptoms appeared as irregularly shaped, brown–to–black necrotic lesions across the entire leaf visible from both surfaces, and frequently on the older leaves. The disease incidence was approximately 30% of 1,000 plants. Twenty symptomatic parthenium weed leaves were collected from several infested livestock feeding plots for pathogen isolation. The infected tissues were sectioned and surface–sterilized with 70% ethyl alcohol for 1 min, rinsed three times with sterile distilled water, transferred onto potato dextrose agar, and incubated at 25°C under continuous dark for 7 days. Microscopic observation revealed fungal colonies with similar characteristics. Mycelium was initially white and gradually changed to pale orange on the back of the plate but later turned black as sporulation began. Conidia were spherical or sub–spherical, single–celled, smooth–walled, 12 to 21 μm diameter (mean = 15.56 ± 0.42 μm, n= 30) and were borne on a hyaline vesicle. Based on morphological features, the fungus was preliminarily identified as Nigrospora sphaerica (Sacc) E. W. Mason (Wang et al. 2017). To confirm identity, molecular identification was conducted using isolate 1SS which was selected as a representative isolate from the 20 isolates obtained. Genomic DNA was extracted from mycelia using a SDS–based extraction method (Xia et al. 2019). Amplification of the rDNA internal transcribed spacer (ITS) region was conducted with universal primer ITS1/ITS4 (White et al. 1990; Úrbez–Torres et al. 2008). The amplicon served as a template for Sanger sequencing conducted at a commercial service provider (Apical Scientific, Malaysia). The generated sequence trace data was analyzed with BioEdit v7.2. From BLASTn analysis, the ITS sequence (GenBank accession number. MN339998) had at least 99% nucleotide identity to that of N. sphaerica (GenBank accession number. MK108917). Pathogenicity was confirmed by spraying the leaf surfaces of 12 healthy parthenium weed plants (2–months–old) with a conidial suspension (106 conidia per ml) collected from a 7 day–old culture. Another 12 plants served as a control treatment and received only sterile distilled water. Inoculation was done 2 h before sunset and the inoculated plants were covered with plastic bags for 24 h to promote conidial germination. All plants were maintained in a glasshouse (24 to 35°C) for the development of the disease. After 7 days, typical leaf blight symptoms developed on the inoculated plants consistent with the symptoms observed in the field. The pathogen was re–isolated from the diseased leaves and morphological identification revealed the same characteristics as the original isolate with 100% re–isolation frequency, thus, fulfilling Koch’s postulates. All leaves of the control plants remained symptomless and the experiment was repeated twice. In Malaysia, the incidence of N. sphaerica as a plant pathogen has been recorded on several important crops such as watermelon and dragon fruit (Kee et al. 2019; Ismail and Abd Razak 2021). To our knowledge, this is the first report of leaf blight on P. hysterophorus caused by N. sphaerica from this country. This report justifies the significant potential of P. hysterophorus as an alternative weed host for the distribution of N. sphaerica. Acknowledgement This research was funded by Universiti Putra Malaysia (UPM/GP–IPB/2017/9523402). References Ismail, S. I., and Abd Razak, N. F. 2021. Plant Dis. 105:488. Karimi, K., et al. 2019. Front Microbiol. 10:19. Kee, Y. J., et al. 2019. Crop Prot. 122:165. Úrbez–Torres, J. R., et al. 2008. Plant Dis. 92:519. Wang, M., et al. 2017. Persoonia 39:118. White, T. J. et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. Xia, Y., et al. 2019. Biosci Rep. 39:BSR20182271.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1657-1657 ◽  
Author(s):  
J. H. Wang ◽  
Z. H. Feng ◽  
Z. Han ◽  
S. Q. Song ◽  
S. H. Lin ◽  
...  

Pepper (Capsicum annuum L.) is an important vegetable crop worldwide. Some Fusarium species can cause pepper fruit rot, leading to significant yield losses of pepper production and, for some Fusarium species, potential risk of mycotoxin contamination. A total of 106 diseased pepper fruit samples were collected from various pepper cultivars from seven provinces (Gansu, Hainan, Heilongjiang, Hunan, Shandong, Shanghai, and Zhejiang) in China during the 2012 growing season, where pepper production occurs on approximately 25,000 ha. Pepper fruit rot symptom incidence ranged from 5 to 20% in individual fields. Symptomatic fruit tissue was surface-sterilized in 0.1% HgCl2 for 1 min, dipped in 70% ethanol for 30 s, then rinsed in sterilized distilled water three times, dried, and plated in 90 mm diameter petri dishes containing potato dextrose agar (PDA). After incubation for 5 days at 28°C in the dark, putative Fusarium colonies were purified by single-sporing. Forty-three Fusarium strains were isolated and identified to species as described previously (1,2). Morphological characteristics of one strain were identical to those of F. concentricum. Aerial mycelium was reddish-white with an average growth rate of 4.2 to 4.3 mm/day at 25°C in the dark on PDA. Pigments in the agar were formed in alternating red and orange concentric rings. Microconidia were 0- to 1-septate, mostly 0-septate, and oval, obovoid to allantoid. Macroconidia were relatively slender with no significant curvature, 3- to 5-septate, with a beaked apical cell and a foot-shaped basal cell. To confirm the species identity, the partial TEF gene sequence (646 bp) was amplified and sequenced (GenBank Accession No. KC816735). A BLASTn search with TEF gene sequences in NCBI and the Fusarium ID databases revealed 99.7 and 100% sequence identity, respectively, to known TEF sequences of F. concentricum. Thus, both morphological and molecular criteria supported identification of the strain as F. concentricum. This strain was deposited as Accession MUCL 54697 (http://bccm.belspo.be/about/mucl.php). Pathogenicity of the strain was confirmed by inoculating 10 wounded, mature pepper fruits that had been harvested 70 days after planting the cultivar Zhongjiao-5 with a conidial suspension (1 × 106 spores/ml), as described previously (3). A control treatment consisted of inoculating 10 pepper fruits of the same cultivar with sterilized distilled water. The fruit were incubated at 25°C in a moist chamber, and the experiment was repeated independently in triplicate. Initially, green to dark brown lesions were observed on the outer surface of inoculated fruit. Typical soft-rot symptoms and lesions were observed on the inner wall when the fruit were cut open 10 days post-inoculation. Some infected seeds in the fruits were grayish-black and covered by mycelium, similar to the original fruit symptoms observed at the sampling sites. The control fruit remained healthy after 10 days of incubation. The same fungus was isolated from the inoculated infected fruit using the method described above, but no fungal growth was observed from the control fruit. To our knowledge, this is the first report of F. concentricum causing a pepper fruit rot. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006. (2) K. O'Donnell et al. Proc. Nat. Acad. Sci. USA 95:2044, 1998. (3) Y. Yang et al. 2011. Int. J. Food Microbiol. 151:150, 2011.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 691-691 ◽  
Author(s):  
Y. H. Jeon ◽  
W. Cheon

Worldwide, Japanese yew (Taxus cuspidata Sieb. & Zucc.) is a popular garden tree, with large trees also being used for timber. In July 2012, leaf blight was observed on 10% of Japanese yew seedling leaves planted in a 500-m2 field in Andong, Gyeongsangbuk-do Province, South Korea. Typical symptoms included small, brown lesions that were first visible on the leaf margin, which enlarged and coalesced into the leaf becoming brown and blighted. To isolate potential pathogens from infected leaves, small sections of leaf tissue (5 to 10 mm2) were excised from lesion margins. Eight fungi were isolated from eight symptomatic trees, respectively. These fungi were hyphal tipped twice and transferred to potato dextrose agar (PDA) plates for incubation at 25°C. After 7 days, the fungi produced circular mats of white aerial mycelia. After 12 days, black acervuli containing slimy spore masses formed over the mycelial mats. Two representative isolates were further characterized. Their conidia were straight or slightly curved, fusiform to clavate, five-celled with constrictions at the septa, and 17.4 to 28.5 × 5.8 to 7.1 μm. Two to four 19.8- to 30.7-μm-long hyaline filamentous appendages (mostly three appendages) were attached to each apical cell, whereas one 3.7- to 7.1-μm-long hyaline appendage was attached to each basal cell, matching the description for Pestalotiopsis microspora (2). The pathogenicity of the two isolates was tested using 2-year-old plants (T. cuspidata var. nana Rehder; three plants per isolate) in 30-cm-diameter pots filled with soil under greenhouse conditions. The plants were inoculated by spraying the leaves with an atomizer with a conidial suspension (105 conidia/ml; ~50 ml on each plant) cultured for 10 days on PDA. As a control, three plants were inoculated with sterilized water. The plants were covered with plastic bags for 72 h to maintain high relative humidity (24 to 28°C). At 20 days after inoculation, small dark lesions enlarged into brown blight similar to that observed on naturally infected leaves. P. microspora was isolated from all inoculated plants, but not the controls. The fungus was confirmed by molecular analysis of the 5.8S subunit and flanking internal transcribed spaces (ITS1 and ITS2) of rDNA amplified from DNA extracted from single-spore cultures, and amplified with the ITS1/ITS4 primers and sequenced as previously described (4). Sequences were compared with other DNA sequences in GenBank using a BLASTN search. The P. microspora isolates were 99% homologous to other P. microspora (DQ456865, EU279435, FJ459951, and FJ459950). The morphological characteristics, pathogenicity, and molecular data assimilated in this study corresponded with the fungus P. microspora (2). This fungus has been previously reported as the causal agent of scab disease of Psidium guajava in Hawaii, the decline of Torreya taxifolia in Florida, and the leaf blight of Reineckea carnea in China (1,3). Therefore, this study presents the first report of P. microspora as a pathogen on T. cuspidata in Korea. The degree of pathogenicity of P. microspora to the Korean garden evergreen T. cuspidata requires quantification to determine its potential economic damage and to establish effective management practices. References: (1) D. F. Farr and A. Y. Rossman, Fungal Databases, Syst. Mycol. Microbiol. Lab. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ (2) L. M. Keith et al. Plant Dis. 90:16, 2006. (3) S. S. N. Maharachchikumbura. Fungal Diversity 50:167, 2011. (4) T. J. White et al. PCR Protocols. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Guihong Xiong ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Blueberry (Vaccinium virgatum), an economically important small fruit crop, is characterized by its highly nutritive compounds and high content and wide diversity of bioactive compounds (Miller et al. 2019). In September 2020, an unknown leaf blight disease was observed on Rabbiteye blueberry at the Agricultural Science and Technology Park of Jiangxi Agricultural University in Nanchang, China (28°45'51"N, 115°50'52"E). Disease surveys were conducted at that time, the results showed that disease incidence was 90% from a sampled population of 100 plants in the field, and this disease had not been found at other cultivation fields in Nanchang. Leaf blight disease on blueberry caused the leaves to shrivel and curl, or even fall off, which hindered floral bud development and subsequent yield potential. Symptoms of the disease initially appeared as irregular brown spots (1 to 7 mm in diameter) on the leaves, subsequently coalescing to form large irregular taupe lesions (4 to 15 mm in diameter) which became curly. As the disease progressed, irregular grey-brown and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath and finally caused dieback and even shoot blight. To identify the causal agent, 15 small pieces (5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface-sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water, and then incubated on potato dextrose agar (PDA) at 28°C for 5-7 days in darkness. Five fungal isolates showing similar morphological characteristics were obtained as pure cultures by single-spore isolation. All fungal colonies on PDA were white with sparse creeping hyphae. Pycnidia were spherical, light brown, and produced numerous conidia. Conidia were 10.60 to 20.12 × 1.98 to 3.11 µm (average 15.27 × 2.52 µm, n = 100), fusiform, sickle-shaped, light brown, without septa. Based on morphological characteristics, the fungal isolates were suspected to be Coniella castaneicola (Cui 2015). To further confirm the identity of this putative pathogen, two representative isolates LGZ2 and LGZ3 were selected for molecular identification. The internal transcribed spacer region (ITS) and large subunit (LSU) were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004) and LROR/LR7 (Castlebury and Rossman 2002). The sequences of ITS region (GenBank accession nos. MW672530 and MW856809) showed 100% identity with accessions numbers KF564280 (576/576 bp), MW208111 (544/544 bp), MW208112 (544/544 bp) of C. castaneicola. LSU gene sequences (GenBank accession nos. MW856810 to 11) was 99.85% (1324/1326 bp, 1329/1331 bp) identical to the sequences of C. castaneicola (KY473971, KR232683 to 84). Pathogenicity was tested on three blueberry varieties (‘Rabbiteye’, ‘Double Peak’ and ‘Pink Lemonade’), and four healthy young leaves of a potted blueberry of each variety with and without injury were inoculated with 20 μl suspension of prepared spores (106 conidia/mL) derived from 7-day-old cultures of LGZ2, respectively. In addition, four leaves of each variety with and without injury were sprayed with sterile distilled water as a control, respectively. The experiment was repeated three times, and all plants were incubated in a growth chamber (a 12h light and 12h dark period, 25°C, RH greater than 80%). After 4 days, all the inoculated leaves started showing disease symptoms (large irregular grey-brown lesions) as those observed in the field and there was no difference in severity recorded between the blueberry varieties, whereas the control leaves showed no symptoms. The fungus was reisolated from the inoculated leaves and confirmed as C. castaneicola by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. castaneicola causing leaf blight on blueberries in China. The discovery of this new disease and the identification of the pathogen will provide useful information for developing effective control strategies, reducing economic losses in blueberry production, and promoting the development of the blueberry industry.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yuexuan Long ◽  
Mingxue Shang ◽  
Yue Deng ◽  
Chuan Yu ◽  
Mingde Wu ◽  
...  

Brassica juncea var. multisecta, a leafy mustard, is widely grown in China as a vegetable (Fahey 2016). In May 2018, blackleg symptoms, grayish lesions with black pycnidia, were found on stems and leaves of B. juncea var. multisecta during disease surveys in Wuhan, Hubei Province. Disease incidence was approximately 82% of plants in the surveyed fields (~1 ha in total). To determine the causal agent of the disease, twelve diseased petioles were surface-sterilized and then cultured on potato dextrose agar (PDA) at 20˚C for 5 days. Six fungal isolates (50%) were obtained. All showed fluffy white aerial mycelia on the colony surface and produced a yellow pigment in PDA. In addition, pink conidial ooze formed on top of pycnidia after 20 days of cultivation on a V8 juice agar. Pycnidia were black-brown and globose with average size of 145 × 138 μm and ranged between 78 to 240 × 71 to 220 μm, n = 50. The conidia were cylindrical, hyaline, and 5.0 × 2.1 μm (4 to 7.1 × 1.4 to 2.9 μm, n=100). These results indicated that the fungus was Leptosphaeria biglobosa rather than L. maculans, as only the former produces yellow pigment (Williams and Fitt 1999). For molecular confirmation of identify, genomic DNAs were extracted and tested through polymerase chain reaction (PCR) assay using the species-specific primers LbigF, LmacF, and LmacR (Liu et al. 2006), of which DNA samples of L. maculans isolate UK-1 (kindly provided by Dr. Yongju Huang of University of Hertfordshire) and L. biglobosa ‘brassicae’ isolate B2003 (Cai et al. 2014) served as controls. Moreover, the sequences coding for actin, β-tubulin, and the internal transcribed spacer (ITS) region of ribosomal DNA (Vincenot et al. 2008) of isolates HYJ-1, HYJ-2 and HYJ-3 were also cloned and sequenced. All six isolates only produced a 444-bp DNA fragment, the same as isolate B2003, indicating they belonged to L. biglobosa ‘brassicae’, as L. maculans generates a 331-bp DNA fragment. In addition, sequences of ITS (GenBank accession no. MN814012, MN814013, MN814014), actin (MN814292, MN814293, MN814294), and β-tubulin (MN814295, MN814296, MN814297) of isolates HYJ-1, HYJ-2 and HYJ-3 were 100% identical to the ITS (KC880981), actin (AY748949), and β-tubulin (AY748995) of L. biglobosa ‘brassicae’ strains in GenBank, respectively. To determine their pathogenicity, needle-wounded cotyledons (14 days) of B. juncea var. multisecta ‘K618’ were inoculated with a conidial suspension (1 × 107 conidia/ml, 10 μl per site) of two isolates HYJ-1 and HYJ-3, twelve seedlings per isolate (24 cotyledons), while the control group was only treated with sterile water. All seedlings were incubated in a growth chamber (20°C, 100% relative humidity under 12 h of light/12 h of dark) for 10 days. Seedlings inoculated with conidia showed necrotic lesions, whereas control group remained asymptomatic. Two fungal isolates showing the same culture morphology to the original isolates were re-isolated from the necrotic lesions. Therefore, L. biglobosa ‘brassicae’ was confirmed to be the causal agent of blackleg on B. juncea var. multisecta in China. L. biglobosa ‘brassicae’ has been reported on many Brassica crops in China, such as B. napus (Fitt et al. 2006), B. oleracea (Zhou et al. 2019), B. juncea var. multiceps (Zhou et al. 2019), B. juncea var. tumida (Deng et al. 2020). To our knowledge this is the first report of L. biglobosa ‘brassicae’ causing blackleg on B. juncea var. multisecta in China, and its occurrence might be a new threat to leafy mustard production of China.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1273-1273 ◽  
Author(s):  
X.-M. Luo ◽  
J.-L. Li ◽  
J.-Y. Dong ◽  
A.-P. Sui ◽  
M.-L. Sheng ◽  
...  

China is the world's largest producer country of coptis (Coptis chinensis), the rhizomes of which are used in traditional Chinese medicine. Since 2008, however, root rot symptoms, including severe necrosis and wilting, have been observed on coptis plants in Chongqing, southwestern China. Of the plants examined from March 2011 to May 2013 in 27 fields, 15 to 30% were covered with black necrotic lesions. The leaves of infected plants showed wilt, necrotic lesions, drying, and death. The fibrous roots, storage roots, and rhizomes exhibited brown discoloration and progressive necrosis that caused mortality of the infected plants. Infected plants were analyzed to identify the causal organism. Discoloration of the internal vascular and cortical tissues of the rhizomes and taproots was also evident. Symptomatic taproots of the diseased coptis were surface sterilized in 1% sodium hypochlorite for 2 min, rinsed in sterile distilled water for 2 min, and then air-dried in sterilized atmosphere/laminar flow. Small pieces of disinfested tissue (0.3 cm in length) were transferred to petri dishes containing potato dextrose agar (PDA) supplemented with 125 μg ml–1 streptomycin sulfate and 100 μg ml–1 ampicillin, and incubated for 5 days at 25°C with a 12-h photoperiod. Four distinct species of fungal isolates (HL1 to 4) derived from single spores were isolated from 30 plants with root rot symptoms collected from the study sites. To verify the pathogenicity of individual isolates, healthy coptis plants were inoculated by dipping roots into a conidial suspension (106 conidia/ml) for 30 min (15 plants per isolate), as described previously (1). Inoculated plants were potted in a mixture of sterilized quartz sand-vermiculite-perlite (4:2:1, v/v) and incubated at 25/18°C and 85 to 90% relative humidity (day/night) in a growth chamber with a daily 16-h photoperiod of fluorescent light. Plants dipped in sterile distilled water were used as controls. After 15 days, symptoms similar to those observed in the field were observed on all plants (n = 15) that were inoculated with HL1, but symptoms were not observed on plants inoculated with HL2, HL3, and HL4, nor on control plants. HL1 was re-isolated from symptomatic plants but not from any other plants. Morphological characterization of HL1 was performed by microscopic examination. The septate hyphae, blunt microconidia (2 to 3 septa) in the foot cell and slightly curved microconidia in the apical cell, and chlamydospores were consistent with descriptions of Fusarium solani (2). The pathogen was confirmed to be F. solani by amplification and sequencing of the ribosomal DNA internal transcribed spacer (rDNA-ITS) using the universal primer pair ITS4 and ITS5. Sequencing of the PCR product revealed a 99 to 100% similarity with the ITS sequences of F. solani in GenBank (JQ724444.1 and EU273504.1). Phylogenetic analysis (MEGA 5.1) using the neighbor-joining algorithm placed the HL1 isolate in a well-supported cluster (97% bootstrap value based on 1,000 replicates) with JQ724444.1 and EU273504.1. The pathogen was thus identified as F. solani based on its morphological and molecular characteristics. To our knowledge, this is the first report of root rot of coptis caused by F. solani in the world. References: (1) K. Dobinson et al. Can. J. Plant Pathol. 18:55, 1996. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, 2006.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhou Zhang ◽  
Zheng Bing Zhang ◽  
Yuan Tai Huang ◽  
FeiXiang Wang ◽  
Wei Hua Hu ◽  
...  

Peach [Prunus persica (L.) Batsch] is an important deciduous fruit tree in the family Rosaceae and is a widely grown fruit in China (Verde et al., 2013). In July and August 2018, a fruit rot disease was observed in a few peach orchards in Zhuzhou city, the Hunan Province of China. Approximately 30% of the fruit in more than 400 trees was affected. Symptoms displayed were brown necrotic spots that expanded, coalesced, and lead to fruit being rotten. Symptomatic tissues excised from the margins of lesions were surface sterilized in 70% ethanol for 10 s, 0.1% HgCl2 for 2 min, rinsed with sterile distilled water three times, and incubated on potato dextrose agar (PDA) at 26°C in the dark. Fungal colonies with similar morphology developed, and eight fungal colonies were isolated for further identification. Colonies grown on PDA were grayish-white with white aerial mycelium. After an incubation period of approximately 3 weeks, pycnidia developed and produced α-conidia and β-conidia. The α-conidia were one-celled, hyaline, fusiform, and ranged in size from 6.0 to 8.4 × 2.1 to 3.1 μm, whereas the β-conidia were filiform, hamate, and 15.0 to 27.0 × 0.8 to 1.6 μm. For molecular identification, total genomic DNA was extracted from the mycelium of a representative isolate HT-1 and the internal transcribed spacer region (ITS), β-tubulin gene (TUB), translation elongation factor 1-α gene (TEF1), calmodulin (CAL), and histone H3 gene (HIS) were amplified and sequenced (Meng et al. 2018). The ITS, TUB, TEF1, CAL and HIS sequences (GenBank accession nos. MT740484, MT749776, MT749778, MT749777, and MT749779, respectively) were obtained and in analysis by BLAST against sequences in NCBI GenBank, showed 99.37 to 100% identity with D. hongkongensis or D. lithocarpus (the synonym of D. hongkongensis) (Gao et al., 2016) (GenBank accession nos. MG832540.1 for ITS, LT601561.1 for TUB, KJ490551.1 for HIS, KY433566.1 for TEF1, and MK442962.1 for CAL). Pathogenicity tests were performed on peach fruits by inoculation of mycelial plugs and conidial suspensions. In one set, 0.5 mm diameter mycelial discs, which were obtained from an actively growing representative isolate of the fungus on PDA, were placed individually on the surface of each fruit. Sterile agar plugs were used as controls. In another set, each of the fruits was inoculated by application of 1 ml conidial suspension (105 conidia/ml) by a spray bottle. Control assays were carried out with sterile distilled water. All treatments were maintained in humid chambers at 26°C with a 12-h photoperiod. The inoculation tests were conducted twice, with each one having three fruits as replications. Six days post-inoculation, symptoms of fruit rot were observed on inoculated fruits, whereas no symptoms developed on fruits treated with agar plugs and sterile water. The fungus was re-isolated and identified to be D. hongkongensis by morphological and molecular methods, thus fulfilling Koch’s Postulates. This fungus has been reported to cause fruit rot on kiwifruit (Li et al. 2016) and is also known to cause peach tree dieback in China (Dissanayake et al. 2017). However, to our knowledge, this is the first report of D. hongkongensis causing peach fruit rot disease in China. The identification of the pathogen will provide important information for growers to manage this disease.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1580-1580 ◽  
Author(s):  
C. Kithan ◽  
L. Daiho

Etlingera linguiformis (Roxb.) R.M.Sm. of Zingiberaceae family is an important indigenous medicinal and aromatic plant of Nagaland, India, that grows well in warm climates with loamy soil rich in humus (1). The plant rhizome has medicinal benefits in treating sore throats, stomachache, rheumatism, and respiratory complaints, while its essential oil is used in perfumery. A severe disease incidence of leaf blight was observed on the foliar portion of E. linguiformis at the Patkai mountain range of northeast India in September 2012. Initial symptoms of the disease are small brown water soaked flecks appearing on the upper leaf surface with diameter ranging from 0.5 to 3 cm, which later coalesced to form dark brown lesions with a well-defined border. Lesions often merged to form large necrotic areas, covering more than 90% of the leaf surface, which contributed to plant death. The disease significantly reduces the number of functional leaves. As disease progresses, stems and rhizomes were also affected, reducing quality and yield. The diseased leaf tissues were surface sterilized with 0.2% sodium hypochlorite for 2 min followed by rinsing in sterile distilled water and transferred into potato dextrose agar (PDA) medium. After 3 days, the growing tips of the mycelium were transferred to PDA slants and incubated at 25 ± 2°C until conidia formation. Fungal colonies on PDA were dark gray to dark brown, usually zonate; stromata regularly and abundantly formed in culture. Conidia were straight to curved, ellipsoidal, 3-septate, rarely 4-septate, middle cells broad and darker than other two end cells, middle septum not median, smooth, 18 to 32 × 8 to 16 μm (mean 25.15 × 12.10 μm). Conidiophores were terminal and lateral on hyphae and stromata, simple or branched, straight or flexuous, often geniculate, septate, pale brown to brown, smooth, and up to 800 μm thick (2,3). Pathogen identification was performed by the Indian Type Culture Collection, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi (ITCC Accession No. 7895.10). Further molecular identity of the pathogen was confirmed as Curvularia aeria by PCR amplification and sequencing of the internal transcribed spacer (ITS) regions of the ribosomal DNA by using primers ITS4 and ITS5 (4). The sequence was submitted to GenBank (Accession No. MTCC11875). BLAST analysis of the fungal sequence showed 100% nucleotide similarity with Cochliobolus lunatus and Curvularia aeria. Pathogenicity tests were performed by spraying with an aqueous conidial suspension (1 × 106 conidia /ml) on leaves of three healthy Etlingera plants. Three plants sprayed with sterile distilled water served as controls. The first foliar lesions developed on leaves 7 days after inoculation and after 10 to 12 days, 80% of the leaves were severely infected. Control plants remained healthy. The inoculated leaves developed similar blight symptoms to those observed on naturally infected leaves. C. aeria was re-isolated from the inoculated leaves, thus fulfilling Koch's postulates. The pathogenicity test was repeated twice. To our knowledge, this is the first report of the presence of C. aeria on E. linguiformis. References: (1) M. H. Arafat et al. Pharm. J. 16:33, 2013. (2) M. B. Ellis. Dematiaceous Hyphomycetes. CMI, Kew, Surrey, UK, 1971. (3) K. J. Martin and P. T. Rygiewicz. BMC Microbiol. 5:28, 2005. (4) C. V. Suberamanian. Proc. Indian Acad. Sci. 38:27, 1955.


Plant Disease ◽  
2000 ◽  
Vol 84 (1) ◽  
pp. 100-100 ◽  
Author(s):  
C. Eken ◽  
E. Demirci

During the summer of 1997 and 1998, a pathogen identified as Colletotrichum truncatum (Schwein.) Andrus & W.D. Moore was isolated from lesions on stems of alfalfa (Medicago sativa L.) plants in Erzurum, Turkey. Typical symptoms on stems of mature plants were large, sunken, irregularly shaped black lesions. Twenty-eight cultures of C. truncatum were isolated from stem lesions. Acervuli containing spores and dark setae were observed within lesions. Conidia were hyaline, one-celled, falcate to nearly straight with a prominent clear area in the center of highly granular cytoplasm, and measured 16.3 to 20.6 × 3.1 to 4.5 μm. These morphological characteristics were consistent with the description of C. truncatum (1). The pathogenicity of two isolates was determined on alfalfa cv. Bilensoy. Alfalfa seedlings (6-week-old) were inoculated with a conidial suspension of the fungus (1.4 × 107 conidia per ml), incubated in a moist chamber for 3 days, and subsequently transferred to growth chambers maintained at 25°C with a 12-h photoperiod. Ten plants were inoculated with each isolate. Symptoms first appeared on stems 12 days after inoculation. Sunken, irregularly shaped black lesions occasionally girdled stems of plants inoculated with C. truncatum. Symptoms did not appear on stems of control plants inoculated with sterile distilled water. C. truncatum was reisolated from symptomatic tissue. This is the first report of C. truncatum on alfalfa from Turkey. Reference: (1) B. C. Sutton. 1992. Pages 1–27 in: Colletotrichum Biology, Pathology and Control. J. A. Bailey and M. J. Jeger, eds. CAB International, Wallingford, U.K.


Sign in / Sign up

Export Citation Format

Share Document