scholarly journals Quantitative PCR Assays Developed for Diaporthe helianthi and Diaporthe gulyae for Phomopsis Stem Canker Diagnosis and Germplasm Screening in Sunflower (Helianthus annuus)

Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 793-800 ◽  
Author(s):  
Taylor R. Elverson ◽  
Brian J. Kontz ◽  
Samuel G. Markell ◽  
Robert M. Harveson ◽  
Febina M. Mathew

Phomopsis stem canker of sunflower is caused by two fungal pathogens, Diaporthe helianthi and Diaporthe gulyae, in the United States. In this study, two quantitative PCR (qPCR) assays were developed to detect and quantify D. helianthi and D. gulyae in sunflower. The two assays differentiated the two fungi from each other, other species of the genus Diaporthe, and pathogens, and they have high efficiency (>90%). The qPCR assays detected the two pathogens on plant samples exhibiting Phomopsis stem canker symptoms sampled from commercial sunflower fields in Minnesota, Nebraska, North Dakota, and South Dakota. Furthermore, the assays were used to screen cultivated sunflower accessions for resistance to D. helianthi and D. gulyae. The disease severity index (DSI) of the accessions significantly correlated (P < 0.0001) with the amount of pathogen DNA from the qPCR assays. The qPCR assays identified PI664232 and PI561918 to be significantly less susceptible (P ≤ 0.05) to D. helianthi and D. gulyae, respectively, when compared with the susceptible check cultivar HA 288, and this was in agreement with the DSI. These results suggest that the qPCR assays for D. helianthi and D. gulyae can be used as a reliable tool to diagnose Phomopsis stem canker and screen sunflower germplasm for disease resistance.

2018 ◽  
Vol 19 (1) ◽  
pp. 92-96 ◽  
Author(s):  
Febina M. Mathew ◽  
James G. Jordahl ◽  
Thomas J. Gulya ◽  
Samuel G. Markell

Phomopsis stem canker is an economically important disease of sunflower (Helianthus annuus), and Diaporthe helianthi is one of the primary causal agents of the disease in the United States. The objective of this study was to evaluate inoculation methods of D. helianthi isolates on sunflower in the greenhouse. Four isolates of D. helianthi were selected to test the effectiveness of four inoculation methods using mycelial plugs as the inoculum, including stem wound, wound inoculation, petiole wound, and straw test. Infection was established by the D. helianthi isolates at 14 days after inoculation for all inoculation methods used. However, recovery of the pathogen from the inoculated plants differed significantly (P < 0.0001) among inoculation methods. Given higher mean recovery of D. helianthi isolates from the inoculated plants and the size of the lesions caused by the pathogen, the stem-wound inoculation method was found to be the most user friendly of the four inoculation methods.


Plant Disease ◽  
2021 ◽  
Author(s):  
Conner L. Tordsen ◽  
Jennifer M. Giles ◽  
Andrew Edward Sathoff

Aphanomyces euteiches causes Aphanomyces root rot (ARR) in alfalfa (Medicago sativa), along with root rot on many other legumes, including pea, clover, and lentil (Malvick et al., 2009). In 2020, South Dakota (SD) planted the most acres of alfalfa in the United States, which demonstrates the importance of alfalfa to the state. Several SD growers reported alfalfa establishment problems likely to be associated with ARR. Soil samples were collected from 16 fields under commercial alfalfa production in Lake County, SD in June 2020. Composite soil samples based on 24 subsamples were collected in a W-shaped pattern at a depth of 15 cm. Collected soil was sieved, and 80 cm3 was placed in plastic pots (6 cm x 6 cm). Each pot was planted with 25 seeds, covered with an additional 15 cm3 soil, and placed in a growth chamber with a 16-hour photoperiod at temperatures of 24 and 19 ℃ (day and night). Alfalfa seedlings, including Saranac (susceptible to races R1 and R2), WAPH-1 (resistant only to R1), WAPH-5 (resistant to both R1 and R2), and Mustang 625 (resistant to both R1 and R2 and coated with mefenoxam) grew in collected soil for 7 days, followed by 4 days under flooded conditions. Trays were drained, and at 21 days after planting (DAP), roots were removed from soil, washed in distilled water, and rated to measure severity of disease symptoms (Samac et al., 2015). The average severity index (ASI) used a 1-5 disease severity scale, 5 being a dead plant and 1 being no symptoms present (http://www.naaic.org/stdtests/Aphano.html). Race was based on ASI where R1 included an ASI of ≥3 for Saranac and <3 for WAPH-1, and R2 included an ASI of >3.0 for Saranac and WAPH-1 and <3.0 for WAPH-5 (Malvick and Grau, 2001). Race-typing experiments were repeated twice with six replicate pots per alfalfa cultivar per experiment and determined the presence of both R1 and R2 in Lake County, SD. ASI values for Mustang 625 and WAPH-5 were similar across all fields evaluated, which indicates limited confounding effects of other root rotting pathogens. DNA was extracted from three symptomatic roots from each field and was PCR amplified using A. euteiches specific primers (Vandemark et al., 2002). A PCR product was observed in all 16 fields evaluated, and the absence of a product was observed when DNA was extracted from alfalfa roots grown in vermiculite. Following race-typing, infected alfalfa roots were surfaced sterilized and placed on Aphanomyces selective media consisting of mefenoxam and benomyl in cornmeal agar (CMA) (Pfender et al., 1984). Isolates were identified as A. euteiches based on hyphal morphology (Malvick and Grau, 2001). Alfalfa seedlings (Saranac) were grown in vermiculite under growth conditions used for the race-typing assay and inoculated 6 DAP with two isolates of A. euteiches. Inoculation was completed using half plates of one week old A. euteiches mycelium on CMA blended with one liter of water (Samac et al., 2015). At 35 DAP, control alfalfa seedlings inoculated with blended CMA and water remained asymptomatic, and alfalfa infected with A. euteiches displayed symptoms including honey-brown colored lesions. For confirmation of Koch’s postulates, DNA from three re-infected seedlings was again PCR amplified using A. euteiches specific primers and confirmed our previous work. This is the first report of either R1 or R2 of A. euteiches causing ARR on alfalfa in SD. To avoid future yield loss, SD growers should consider planting available alfalfa cultivars that have resistance to both races of A. euteiches.


2018 ◽  
Vol 19 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Febina M. Mathew ◽  
Taylor R. Olson ◽  
Laura F. Marek ◽  
Thomas J. Gulya ◽  
Samuel G. Markell

Phomopsis stem canker is an important disease on sunflower (Helianthus annuus) in Minnesota, North Dakota, and South Dakota. To date, Diaporthe helianthi and D. gulyae have been reported as the common and primary causal agents in this region. The objectives of this study were to compare aggressiveness of the two species and evaluate the USDA cultivated sunflower germplasm collection for resistance to the two pathogens. Five D. helianthi isolates and five D. gulyae isolates were compared for their aggressiveness on the USDA susceptible confection inbred ‘HA 288’ using the stem-wound inoculation method. The results of this study demonstrated that D. helianthi and D. gulyae isolates did not vary significantly (P > 0.05) in their aggressiveness. Using a representative isolate of D. helianthi and D. gulyae, 49 accessions were screened for Phomopsis stem canker using the stem-wound method in the greenhouse. Among the 49 accessions, 13 and 4 accessions were less susceptible to D. helianthi and D. gulyae, respectively, compared with HA 288. Only one accession (PI 552939) was observed to be significantly less susceptible to both D. helianthi and D. gulyae when compared with HA 288.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 802
Author(s):  
Pierluigi Reveglia ◽  
Regina Billones-Baaijens ◽  
Jennifer Millera Millera Niem ◽  
Marco Masi ◽  
Alessio Cimmino ◽  
...  

Grapevine trunk diseases (GTDs) are considered a serious problem to viticulture worldwide. Several GTD fungal pathogens produce phytotoxic metabolites (PMs) that were hypothesized to migrate to the foliage where they cause distinct symptoms. The role of PMs in the expression of Botryosphaeria dieback (BD) symptoms in naturally infected and artificially inoculated wood using molecular and analytical chemistry techniques was investigated. Wood samples from field vines naturally infected with BD and one-year-old vines inoculated with Diplodia seriata, Spencermartinsia viticola and Dothiorella vidmadera were analysed by cultural isolations, quantitative PCR (qPCR) and targeted LC-MS/MS to detect three PMs: (R)-mellein, protocatechuic acid and spencertoxin. (R)-mellein was detected in symptomatic naturally infected wood and vines artificially inoculated with D. seriata but was absent in all non-symptomatic wood. The amount of (R)-mellein detected was correlated with the amount of pathogen DNA detected by qPCR. Protocatechuic acid and spencertoxin were absent in all inoculated wood samples. (R)-mellein may be produced by the pathogen during infection to break down the wood, however it was not translocated into other parts of the vine. The foliar symptoms previously reported in vineyards may be due to a combination of PMs produced and climatic and physiological factors that require further investigation.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Yinzhu Jin ◽  
Aifang Du ◽  
Chaoqun Yao

Abstract Background Several Tritrichomonas species have been found in mammalian hosts. Among these trichomonads T. foetus is often found in the urogenital tract of cattle and the gastrointestinal tract of the domestic cat, resulting in sexually transmitted bovine trichomonosis and fecal-orally transmitted feline trichomonosis, respectively. The aims of the current study were to molecularly characterize clinical isolates of T. foetus in cattle populations in Wyoming, South Dakota, and Montana of the United States of America and to phylogenetically analyze Tritrichomonas species of mammalian hosts. Results DNA sequencing of rRNA genes showed over 99% identity of the newly described isolates to other bovine isolates. Further, T. foetus isolates of various mammalian hosts originated in different geographic regions worldwide were clustered into two well-defined clades by phylogenetic analysis of rRNA and cysteine protease 2 genes. Clade I consisted of isolates originated from cattle, pig, and human whereas clade II contained isolates of cat and dog. Conclusion It is concluded that all mammalian Tritrichomonas spp. apparently belong to T. foetus. Analysis of more sequences is warranted to support this conclusion.


2013 ◽  
Vol 320 ◽  
pp. 768-773
Author(s):  
Tien Kuei Yu

A technical computer animation for dynamic film, animated short film production to Taiwan by customers to move to the development of the continent, a shrinking market worries. Visible the Taiwan in animation foundry (low-cost, high-quality, high-efficiency) industry, no longer is an advantage. The other hand, the industry has also been realized to cartoons of the United States and Japan and therefore positive efforts (toward the direction of home-made animation Fanmei Jun, 2004). Secondly, the computer animation at this stage of the development of animation industry in Taiwan is the weakest that is, the ability of the financial, legal, and international marketing. Due to the creation of the marketing practices of the finished product is difficult to both creators oriented (Hongfeng Yi, 2004). The research basis the Tsou-Hsiang Ju (2008) using conjoint analysis, analysis of four different preference cluster analysis, five kinds of film properties and their rights, grey relational analysis of dynamic video library field to be named; understand the Hall field the eyes of the average consumer selection situation, it is recommended to design products to meet consumer preferences, and to continue to innovate and reform, driven by the digital content industry to flourish in the international market and to keep pace with foreign manufacturers.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 148-148 ◽  
Author(s):  
J. Liu ◽  
H. D. Luo ◽  
W. Z. Tan ◽  
L. Hu

Conyza sumatrensis (Asteraceae), an annual or biennial plant, is native to North and South America. It is an invasive, noxious weed that is widespread in southern and southeastern China. It invades farm land and causes great losses to dry land crops, including wheat, corn, and beans. It also reduces biological diversity by crowding out native plants in the infested areas (3,4). During a search for fungal pathogens that could serve as potential biological control agents of C. sumatrensis, a leaf spot disease was observed in 2010 in Chongqing, China. An isolate (SMBC22) of a highly virulent fungus was obtained from diseased leaves. Pathogenicity tests were performed by placing 6-mm-diameter mycelial disks of 7-day-old potato dextrose agar (PDA) cultures of SMBC22 on leaves of 15 healthy greenhouse-grown plants of C. sumatrensis; the same number of control plants was treated with sterile PDA disks. Treated plants were covered with plastic bags for 24 h and maintained in a growth chamber with daily average temperatures of 24 to 26°C, continuous light (3,100 lux), and high relative humidity (>90%). Lesions similar to those observed in the field were first obvious on the SMBC22-inoculated leaves 3 days after inoculation. Symptoms became severe 7 to 9 days after inoculation. Control plants remained healthy. The fungus was reisolated from inoculated and diseased leaves and it was morphologically the same as SMBC22. The pathogenicity test was conducted three times. A survey of 10 southern and southeastern Chinese provinces revealed that the disease was widespread and it attacked leaves and stems of seedlings and mature plants of C. sumatrensis. Lesions on leaves were initially small, circular, and water soaked. The typical lesion was ovoid or fusiform, dark brown, and surrounded by a yellow halo. The spots coalesced to form large lesions and plants were often completely blighted. Fungal colonies of SMBC22 on PDA plates were initially white and turned dark gray. Colonies were circular with smooth edges with obvious rings of pycnidia on the surface. Aerial hyphae were short and dense. Pycnidia, black and immersed or semi-immersed in the medium, were visible after 12 days of incubation. Pycnidia were 72 to 140 μm in diameter. Conidia were produced in the pycnidia and were hyaline, unicellular, ellipsoidal, and 4.4 to 6.1 × 1.6 to 2.2 μm. To confirm identification of the fungus, genomic DNA was extracted from mycelia of a 7-day-old culture on PDA at 25°C (2). The internal transcribed spacer (ITS) gene of rDNA was amplified using primers ITS4/ITS5. The gene sequence was 524 bp long and registered in NCBI GenBank (No. HQ645974). BLAST analysis showed that the current sequence had 99% homology to an isolate of Phoma macrostoma (DQ 404792) from Cirsium arvense (Canada thistle) in Canada and reported to cause chlorotic symptoms on that host plant (1). To our knowledge, this is the first report of P. macrostoma causing disease on C. sumatrensis in China. P. macrostoma, thought of as a biocontrol agent of broadleaf weeds in Canada, has been patented in the United States. The current isolate of P. macrostoma is considered as a potential biocontrol agent of C. sumatrensis. References: (1) P. R. Graupner et al. J. Nat. Prod. 66:1558, 2004. (2) S. Takamatsu et al. Mycoscience 42:135, 2001. (3) W. Z. Tan et al. Page 177 in: Manual of Emergency Control Technology Invasive Pests in China. G. L. Zhang, ed. Science Press, Beijing, 2010. (4) C. Wang et al. J. Wuhan Bot. Res. 28:90, 2010.


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 110-110 ◽  
Author(s):  
T. Kolomiets ◽  
Z. Mukhina ◽  
T. Matveeva ◽  
D. Bogomaz ◽  
D. K. Berner ◽  
...  

Salsola tragus L. (Russian thistle) is a problematic invasive weed in the western United States and a target of biological control efforts. In September of 2007, dying S. tragus plants were found along the Azov Sea at Chushka, Russia. Dying plants had irregular, necrotic, canker-like lesions near the base of the stems and most stems showed girdling and cracking. Stem lesions were dark brown and contained brown pycnidia within and extending along lesion-free sections of the stems and basal portions of leaves. Diseased stems were cut into 3- to 5-mm pieces and disinfested in 70% ethyl alcohol. After drying, stem pieces were placed into petri dishes on the surface of potato glucose agar. Numerous, dark, immersed erumpent pycnidia with a single ostiole were observed in all lesions after 2 to 3 days. Axenic cultures were sent to the Foreign Disease-Weed Science Research Unit, USDA, ARS, Ft. Detrick, MD for testing in quarantine. Conidiophores were simple, cylindrical, and 5 to 25 × 2 μm (mean 12 × 2 μm). Alpha conidia were biguttulate, one-celled, hyaline, nonseptate, ovoid, and 6.3 to 11.5 × 1.3 to 2.9 μm (mean 8.8 × 2.0 μm). Beta conidia were one-celled, filiform, hamate, hyaline, and 11.1 to 24.9 × 0.3 to 2.5 μm (mean 17.7 × 1.2 μm). The isolate was morphologically identified as a species of Phomopsis, the conidial state of Diaporthe (1). The teleomorph was not observed. A comparison with available sequences in GenBank using BLAST found 528 of 529 identities with the internal transcribed spacer (ITS) sequence of an authentic and vouchered Diaporthe eres Nitschke (GenBank DQ491514; BPI 748435; CBS 109767). Morphology is consistent with that of Phomopsis oblonga (Desm.) Traverso, the anamorph of D. eres (2). Healthy stems and leaves of 10 30-day-old plants of S. tragus were spray inoculated with an aqueous suspension of conidia (1.0 × 106 alpha conidia/ml plus 0.1% v/v polysorbate 20) harvested from 14-day-old cultures grown on 20% V8 juice agar. Another 10 control plants were sprayed with water and surfactant without conidia. Plants were placed in an environmental chamber at 100% humidity (rh) for 16 h with no lighting at 25°C. After approximately 24 h, plants were transferred to a greenhouse at 20 to 25°C, 30 to 50% rh, and natural light. Stem lesions developed on three inoculated plants after 14 days and another three plants after 21 days. After 70 days, all inoculated plants were diseased, four were dead, and three had more than 75% diseased tissue. No symptoms occurred on control plants. The Phomopsis state was recovered from all diseased plants. This isolate of D. eres is a potential biological control agent of S. tragus in the United States. A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI 878717). Nucleotide sequences for the ribosomal ITS regions (ITS 1 and 2) were deposited in GenBank (Accession No. EU805539). To our knowledge, this is the first report of stem canker on S. tragus caused by D. eres. References: (1) B. C. Sutton. Page 569 in: The Coelomycetes. CMI, Kew, Surrey, UK, 1980. (2) L. E. Wehmeyer. The Genus Diaporthe Nitschke and its Segregates. University of Michigan Press, Ann Arbor, 1933.


Sign in / Sign up

Export Citation Format

Share Document