scholarly journals Root Rot of Codonopsis tangshen Caused by Ilyonectria robusta In Chongqing, China

Plant Disease ◽  
2021 ◽  
Author(s):  
Zhenlei Zheng ◽  
Jian Cao ◽  
Yanyue Li ◽  
Tingting Luo ◽  
Tianhui Zhu ◽  
...  

Codonopsis tangshen Oliv. belongs to the Campanulaceae, it is one of the most important economically medicinal materials in China.Which is used in medical and agricultural applications (Wu Q N, et al. 2020). In August 2019, root rot of C. tangshen was firstly observed in Fengjie, Chongqing city, southwest China (30°45′ 59″ N; 109°36′36″ E; ), causing approximately 20% yield loss. At the initial stage of the disease, the above-ground stems and leaves turn yellow, and brown to black spots of different sizes appear at the base or root of the stem. With the further development of the disease, the above-ground leaves gradually turn yellow as the diseased spots rot from bottom to top, so that they die, and the diseased spots on the roots expand and begin to rot. Generally, they gradually rot from the bottom up, but the vascular bundles are occasionally normal. If the symptoms of C.tangshen started too late, and the root has not completely rotted by late autumn (late October to early November), the rest part of C.tangshen root will not continue to rot, and it is called half C.tangshen. In the next spring, the halfC. tangshen can continue to sprout, but it will continue to rot, which will seriously affect the yield and quality. In order to identify the pathogen, 25 samples of diseased plants were collected and symptomatic rhizome tissues were surface disinfected with 0.1% HgCl2 solution for 30s, rinsed in sterilized water 3 times, placed on potato dextrose agar (PDA), and incubated at 25℃±1°C in the dark. On the PDA, after seven days of culture, the center appeared light yellow, the edges were white, and the aerial hyphae were felt-like. The surface of the colony was reddish-brown and the margins were white and regular. The conidiophores were simple, usually born on the lateral or apical sides of aerial mycelium, unbranched, or minimally branched. Conidia were abundant, cylindrical, or rod-shaped, straight or slightly curved, usually with 1–3 septa. Macroconidia varied in size depending on the number of cells as follows: one-septate 15.3–26.3×4.2–7.3 μm(n=50)μm, two-septate 20.5-30.5×4.9-7.8μm (n=50), and three-septate 29.3–38.5×5.5–7.4 μm (n=50), round at both ends. For molecular identification, DNA was extracted from a representative isolate using a fungus genomic DNA extraction kit (Solarbio, Beijing, China). The internal transcribed spacer (ITS)(ITS1/ITS4, White, et al. 1990), beta-tubulin (TUB2)(BT2A/BT2B, O’Donnell and Cigelnik 1997), translation elongation factor 1-a (TEF) ( EF446F/EF1035R, Inderbitzin et al. 2005), DNA-dependent RNA polymerase subunit II gene(RPB2, O'Donnell K., et al. 2010 ) and histone H3(HIS3) (CYLH3F/CYLH3R, Crous, et al. 2004b) were amplified. BLAST results indicated that the ITS, TUB2, TEF, HIS3, and RPB2 sequences (GenBank MW392103, MW386994, MW386995 MW392103, and MW915473) showed 96% to 100% identity with Ilyonectria robusta sequences at NCBI (GenBank KU350726, JF335378, MN833103, MN833113, KM232336). The phylogenetic tree was inferred from the combined datasets (ITS, TEF1, TUB, and HIS3) from members of the I. robusta species complex analyzed in this study (Cabral et al. 2012 ). To complete Koch's postulates, a conidial suspension (106 spores/ml) collected from isolate CQ13 was irrigated onto fifteen annual C.tangshen potted plants. Sterile water was used as a negative control, and the pathogenicity assay was repeated three times. Following inoculation, the plants were cultured for 9 days at 75% relative humidity and 25 ℃. The inoculated plants showed symptoms similar to those observed in the field. In contrast, the negative control plants were healthy and unaffected. I. robusta was re-isolated from the infected tissues and identified by morphological characteristics and DNA sequence analysis. To our knowledge, this is the first report of I. robusta causing root rot disease of C.tangshen in China. Our results may help to take appropriate steps to control the disease in the commercial area of C.tangshen. The authors declare no conflict of interest.

Plant Disease ◽  
2021 ◽  
Author(s):  
Sixto Velarde Felix ◽  
Victor Valenzuela ◽  
Pedro Ortega ◽  
Gustavo Fierros ◽  
Pedro Rojas ◽  
...  

Chickpea (Cicer aretinium L.) is a legume crop of great importance worldwide. In January 2019, wilting symptoms on chickpea (stunted grow, withered leaves, root rot and wilted plants) were observed in three fields of Culiacan Sinaloa Mexico, with an incidence of 3 to 5%. To identify the cause, eighty symptomatic chickpea plants were sampled. Tissue from roots was plated on potato dextrose agar (PDA) medium. Typical Fusarium spp. colonies were obtained from all root samples. Ten pure cultures were obtained by single-spore culturing (Ff01 to Ff10). On PDA the colonies were abundant with white aerial mycelium, hyphae were branched and septae and light purple pigmentation was observed in the center of old cultures (Leslie and Summerell 2006). From 10-day-old cultures grown on carnation leaf agar medium, macroconidias were falciform, hyaline, with slightly curved apexes, three to five septate, with well-developed foot cells and blunt apical cells, and measured 26.6 to 45.8 × 2.2 to 7.0 μm (n = 40). The microconidia (n = 40) were hyaline, one to two celled, produced in false heads that measured 7.4 to 20.1 (average 13.7) μm × 2.4 to 8.9 (average 5.3) μm (n = 40) at the tips of long monophialides, and were oval or reniform, with apexes rounded, 8.3 to 12.1 × 1.6 to 4.7 μm; chlamydospores were not evident. These characteristics fit those of the Fusarium solani (Mart.) Sacc. species complex, FSSC (Summerell et al. 2003). The internal transcribed spacer and the translation elongation factor 1 alpha (EF1-α) genes (O’Donnell et al. 1998) were amplified by polymerase chain reaction and sequenced from the isolate Ff02 and Ff08 (GenBank accession nos. KJ501093 and MN082369). Maximum likelihood analysis was carried out using the EF1-α sequences (KJ501093 and MN082369) from the Ff02 and Ff08 isolates and other species from the Fusarium solani species complex (FSSC). Phylogenetic analysis revealed the isolate most closely related with F. falciforme (100% bootstrap). For pathogenicity testing, a conidial suspension (1x106 conidia/ml) was prepared by harvesting spores from 10-days-old cultures on PDA. Twenty 2-week-old chickpea seedlings from two cultivars (P-2245 and WR-315) were inoculated by dipping roots into the conidial suspension for 20 min. The inoculated plants were transplanted into a 50-hole plastic tray containing sterilized soil and maintained in a growth chamber at 25°C, with a relative humidity of >80% and a 12-h/12-h light/dark cycle. After 8 days, the first root rot symptoms were observed on inoculating seedlings and the infected plants eventually died within 3 to 4 weeks after inoculation. No symptoms were observed plants inoculated with sterilized distilled water. The fungus was reisolated from symptomatic tissues of inoculated plants and was identified by sequencing the partial EF1-α gene again and was identified as F. falciforme (FSSC 3 + 4) (O’Donnell et al. 2008) based on its morphological characteristics, genetic analysis, and pathogenicity test, fulfilling Koch’s postulates. The molecular identification was confirmed via BLAST on the FusariumID and Fusarium MLST databases. Although FSSC has been previously reported causing root rot in chickpea in USA, Chile, Spain, Cuba, Iran, Poland, Israel, Pakistan and Brazil, to our knowledge this is the first report of root rot in chickpea caused by F. falciforme in Mexico. This is important for chickpea producers and chickpea breeding programs.


Plant Disease ◽  
2021 ◽  
Author(s):  
Wu Zhang ◽  
Xiu Li Song

The pygmy date palm (Phoenix roebelenii) is a popular ornamental plant widely cultivated in tropical regions as well as in China. In June 2018, a new leaf spot symptoms were observed on P. roebelenii in several different parks in Zhanjiang City of China. The early symptoms of infected leaves were presented with small, round, pale brown spots. As the size of these spots increased, they coalesced to form larger irregular necrotic lesions surrounded by dark brown edges, which eventually led to leaf wilted and defoliation. A filamentous fungus was consistently isolated from infected leaf samples. Colonies on PDA at 25°C (12 h light/dark) were initially white with abundant aerial mycelium, which turned fluffy and dark olivaceous after one-week culture. Pycnidial conidiomata were black and globose and formed on pine needles in water agar at 25°C (12 h light/dark) after 21 days. Conidiogenous cells were hyaline, cylindrical, holoblastic. The conidia was ovoid to ellipsoid, thick-walled, which was initially hyaline and aseptate, later turned into dark brown and 1-septate with a striate appearance to conidia, 11.6~25.0 μm×9.6~12.0 μm (av. 20.4 μm×10.1 μm). For molecular identification, the partial sequences of internal transcribed spacer (ITS) regions, translation elongation factor (EF-1α) and β-tubulin (TUB) genes of two representative isolates RYCK-1, RYCK-2 were amplified and sequenced using primer pairs ITS/ITS4 (White et al. 1990), EF-688F/EF-986R (Carbone and Kohn 1999), and Bt2a/Bt2b (Glass and Donaldson 1995), respectively. The sequences of the above three loci of the two isolates (accession nos. ITS, OK329968 and OK329969; EF-1α, OK338067 and OK338068; TUB, OK338069 and OK338070) showed 98.4-100.0 % identity with the existing sequences of ex-type culture CBS 122528 of N. phoenicum. A multilocus phylogenetic analysis of the three loci concatenated sequences using the maximum likelihood method showed the isolates that belongs to N. phoenicum. Based on the morphological characteristics and molecular analysis of the isolates, the fungus was identified as N. phoenicum (Phillips et al. 2008). To confirm pathogenicity, five one-year-old potted plants were used for each isolate (RYCK-1 and RYCK-2) and the plants were inoculated by pricking the epidermis of the leaf with a needle. Five leaves of each plant were sprayed with 100 µl of a conidial suspension (1 × 106 conidia/ml) to the wounded surface for each plant. Sterilized distilled water was used as the control and the experiment was repeated. All the plants were incubated at 26 ± 2°C (12 h light/dark) and covered with plastic bags to maintain constant high humidity. After 14 days, all the inoculated leaves showed the same symptoms as those observed in the original diseased plants, but the control plants remained health. The reisolated fungus was identified as N. phoenicum by morphological and molecular characteristics. N. phoenicum is an important pathogen of Phoenix species plants worldwide, which have been reported to cause shoot blights and stalk rots on P. dactylifera and P. canariensis in Greece (Ligoxigakis et al. 2013) and root rot on P. dactylifera in Qatar (Nishad and Ahmed 2020). To our knowledge, this is first report N. phoenicum causing leaf spot on P. roebelenii in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Shan Han ◽  
Jimin Ma ◽  
Yanyue Li ◽  
Shujiang Li ◽  
yinggao Liu ◽  
...  

Cycas debaoensis Y. C. Zhong et C. J. Chen is an endemic species in China that is listed among China’s national key preserved wild plants (Class I) (Xie et al. 2005). It is mainly distributed in south China (Guangxi, Guizhou, and other regions). In April 2017, a new leaf disease of C. debaoensis was found in Chengdu (30°35′32″ N; 104°05′11″E) in China with an incidence over 40%. Symptoms on C. debaoensis initially appeared as brown necrotic lesions on the margin or in the center of leaves. The lesions then enlarged gradually and developed into brown spots, necrotic lesions with dark brown margins. Many small and black dots were observed on necrotic lesions. Eventually, the diseased leaves withered and died. Ten samples were collected and surface-sterilized by 3% NaClO and 75% ehanol respectively for 60s and 90s, rinsed with autoclaved distilled water and then blot-dried with autoclaved paper towels. Five isolates from diseased leaves with similar morphology were isolated from single spores. Morphological characteristics were recorded from pure cultures grown on potato dextrose agar (PDA) incubated at 25°C for 3-9 days. Initially, the colonies grown on PDA were white, then, became pale gray with concentric zones and greenish black beneath. Conidia were single-celled, smooth-walled, straight, colorless, cylindrical with both ends bluntly rounded,13.0-16.5 × 4.7-5.8 μm in size (n = 100 spores). For molecular identification, the genomic DNA of the isolates was extracted using a DNeasyTM Plant Mini Kit (Qiagen). The internal transcribed spacer (ITS) (ITS1/ITS4 White et al., 1990), β-tubulin (TUB2) (BT2A/BT2B (O’Donnell et al., 1997)), actin (ACT) (ACT512F/ACT (Carbone & Kohn, 1999)), calmodulin (CAL) (CL1C/CL2C (Weir et al., 2012)), mating type protein and chitin synthase (CHS-1) (CHS-1) (CHS-9 79F/CHS-345R (Carbone & Kohn, 1999)) were amplified. BLAST results indicated that the ITS, TUB2, ACT, CAL, CHS-1 sequences (GenBank MN305712, MN605072, MT478663, MT465591 and MT478664) showed 99-100% identity with C. siamense sequences at NCBI (GenBank JF710564, MK341542, MK855094, MH351155 and MK471373). The Phylogenetic tree inferred from the combined dataesets (TEF, TUB and ACT) show that the isolate belongs to C. siamense clade with a credibility value of 99%. Two-year-old potted plants of C. debaoensis (10 plants) were used for pathogenicity test. On each plant, 5 leaves were sprayed with a conidial suspension (1 × 106 conidia/ml) on both sides of the leaves. Autoclaved distilled water was used as negative control (10 plants). Plants were kept in the greenhouse at 25 °C under 16h/8h photoperiod and 70-75% relative humidity (RH). The symptoms observed on the inoculated plants were similar to those observed in the field, while the controls remained asymptomatic. C. siamense was re-isolated from all diseased inoculated plants, and the culture and fungus characteristics were the same as the original isolate. The morphological characteristics and molecular analyses of the isolate matched the description of C. siamense (Prihastuti et al., 2009). C. siamense was previously reported infecting Citrus reticulata (Cheng et al. 2013), but this is the first report of brown leaf spot on C. debaoensis caused by C. siamense in China. This finding provides important basis for further research on the control of the disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jinshao Li ◽  
Li Cheng

Gastrodia elata, a traditional and important medicinal plant in China, it is used to numerous medical reasons. It is widely planted in Shaxi, Guizhou Province, China. G. elata grown in Guizhou is of high quality and an important source of income for the region. However, a root rot disease has been reported on G. elata in Guizhou in recent years, with an incidence rate of approximately 25%; this disease has markedly affected the plant growth and development. It causes what is referred to as a “rotten nest” and “empty nest”, significantly reducing the yield and medicinal value of G. elata. Eighty diseased G. elata samples were collected from August to December 2020 in Shaxi. Tissue dissection was used to isolate the pathogen on an ultra-clean workbench. In short, thew surface of G. elata was wiped with 75% alcohol for 30 s and then rinsed three to four times with sterile water. After the surface had dried, the skin from an infected area of the plant was cut into a net shape using a sterile scalpel. Eighty diseased tissue samples were placed on PDA (potato dextrose agar) medium using a sterile medical syringe needle and placed in an incubator at 25 °C for 7 days, and 61 fungal isolates with the same morphological characteristics were obtained from the diseased samples. Pure cultures of a putative fungal pathogen designated SX13 were obtained using the single-spore isolation and cultured on PDA medioum for identification and analysis. The colony grew in a circular shape, and the early hyphae were compact and white. A light-yellow ring appeared in the outer circle of the hyphae, and could be seen on both sides of the plate. The upper side of the colony turned white subsequently, and the lower side was light yellow. Identification of SX13 as Fusarium solani was primarily done based on morphological characteristics (Chitrampalam et al., 2018). Colonies produced macroconidia, which were sickle-shaped with two to five septa; most of them had three septa (length by width: 17.28 to 36.23 μm by 4.33 to 6.43 μm). Smaller conidia were fusiform, renal, or oblong, with no or one septum (length by width: 5.56 to 14.35 μm by 2.93 to 5.76 μm). Chlamydospore were also observed with diameters of ranging from 3.43 to 13.12 μm. Identification of SX13 was verified through DNA sequencing. Genomic DNA was extracted using the Biomiga Fungal gDNA Kit. The internal transcribed spacer (ITS) region (primers ITS5/ITS4) (Schoch et al., 2012), β-tubulin (primers T1/T2) (O’Donnell and Cigelnik, 1997), and actin gene (ACT) region (primers ACT-512F/ACT-783R) (Carbone and Kohn, 1999) were PCR amplified, sequenced, and subjected to NCBI BLASTn homology matching analyses (GenBank Accession Nos. MW888340, MW892976 and MZ440809). High levels of sequence homology were observed with a F. solani reference sequence (Accession Nos. MT560378, ITS=100%; KU938955, β-tubulin=100%; KM231197, ACT=99%). To complete Koch's postulates, a conidial suspension (106 spores/mlcollected from isolate SX13 was inoculated onto nine G. elata root samples. Sterile water was used as a negative control, and the pathogenicity assay was repeated three times. Following inoculation, plants were kept under high relative humidity in the dark at 25 °C for 7 days. Symptoms similar to the original outbreak were observed on all inoculated plants. In contrast, the negative control plants were healthy and unaffected. The SX13 was re-isolated successfully from the diseased tissues and verified based on morphology and sequencing as described above. To the best of our knowledge, this is the first report of F. solani causing root rot disease on G. elata in China. These findings provide a basis for further research on the management of this disease.


Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1069-1069 ◽  
Author(s):  
J. C. Bienapfl ◽  
D. K. Malvick ◽  
J. A. Percich

Multiple Fusarium species have been found in association with soybean (Glycine max) plants exhibiting root rot in the United States (3). Soybean plants that lacked apparent foliar symptoms, but exhibited 2- to 5-mm brown, necrotic taproot lesions and lateral root necrosis were observed in Minnesota in one field each in Marshall and Otter Tail counties in July of 2007, as well as in one field in Marshall County in July of 2008. Sampling was conducted as part of a study investigating root rot in major soybean-production areas of Minnesota. Plants were arbitrarily dug up at the R3 growth stage. Root systems were washed, surface disinfested in 0.5% NaOCl for 3 min, rinsed in deionized water, and dried. Fusarium isolates were recovered from root sections with necrotic lesions embedded in modified Nash-Snyder medium (1). One resulting Fusarium colony from one plant per county was transferred to half-strength acidified potato dextrose agar (PDA) and carnation leaf agar (CLA) to examine morphological characteristics (4). Culture morphology on PDA consisted of flat mycelium with sparse white aerial mycelium. On CLA, thick-walled macroconidia with a hooked apical cell and a foot-shaped basal cell were produced in cream-colored sporodochia. Macroconidia ranged from 32.5 to 45.0 μm long. Microconidia were oval to cylindrical with 0 to 1 septa, ranged from 7.5 to 11.25 μm long, and were produced on monophialides. Chlamydospores were produced abundantly in chains that were terminal and intercalary in the hyphae of 4-week-old cultures. Morphological characteristics of the three isolates were consistent with descriptions of F. redolens (2,4). The identity of each isolate was confirmed by sequencing the translation elongation factor 1-α (TEF) locus (4). BLAST analysis of the TEF sequences from each isolate against the FUSARIUM-ID database resulted in a 100% match for 17 accessions of F. redolens (e.g., FD 01103, FD 01369). Each F. redolens isolate was tested for pathogenicity on soybean. Sterile sorghum grain was infested with each isolate and incubated for 2 weeks. Sterile sorghum was used for control plants. Soybean seeds of cv. AG2107 were planted in 11.4-cm pots ~1 cm above a 25-cm3 layer of infested sorghum or sterile sorghum. Two replicate pots containing four plants each were used per treatment and the experiment was repeated once. Root rot was assessed 28 days after planting. Each F. redolens isolate consistently caused taproot necrosis on inoculated plants, whereas control plants did not exhibit root necrosis. Isolations were made from roots of inoculated and control plants and the isolates recovered from inoculated plants were identified as F. redolens based on morphological characteristics and TEF sequences. Fusarium species were not isolated from control plants. To our knowledge, this is the first report of F. redolens causing root rot of soybean; however, it is possible F. redolens has been found previously and misidentified as F. oxysporum (2,4). Results from inoculations suggest that F. redolens may be an important root rot pathogen in Minnesota soybean fields. References: (1) J. C. Bienapfl et al. Acta Hortic. 668:123, 2004. (2) C. Booth and J. M. Waterston. No. 27 in: CMI Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, England, 1964. (3) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. The American Phytopathological Society, St. Paul, MN, 1999. (4) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiaodong Sun ◽  
Xinglai Cai ◽  
Qiangqiang Pang ◽  
Man Zhou ◽  
Wen Zhang ◽  
...  

Kalanchoe pinnata (Lam.) Pers. [syn.: Bryophyllum pinnatum (Lam.) Oken] is an important medicinal agent in southern China. The succulent leaves of this plant are used in the treatment of cholera, bruises, uri­nary diseases and whitlow. In Oct. 2019, leaf spots were detected on K. pinnata plants in Chengmai County, Hainan Province, China. Lesions with brown to black margins were irregularly shaped and associated with leaf margins. Spots coalesced to form larger lesions (Fig. S1-A), with black pycnidia present in more mature lesions. Symptomatic K. pinnata were found with 10-20% incidence during the humid winters of Hainan Province. Leaf tissues of 10 symptomatic plants were collected and surface sterilized in 70% ETOH for 30s, 0.1% HgCl2 for 30 s, rinsed 3x with sterile distilled water for 30s, placed on potato dextrose agar (PDA) amended with 30mg/L of kanamycin sulfate, and incubated at 25°C in the dark for 3-5 days. Four fungal isolates were obtained using a single-spore isolation method. The colonies were floccose, dense, and white with forming on older colonies grown on PDA (Fig. S1-B-1&2). Alpha conidia exuded from ostiole, rostrate, long-beaked pycnidia in creamy-to-yellowish drops. Alpha conidia were hyaline, ellipsoidal, separated and averaged 6.3μm (SD ± 1.13) long × 1.9μm (SD ± 0.33) wide (n=50). Beta conidia were not seen. The morphological characteristics matched the previous description of Diaporthe longicolla (syn. Phomopsis longicolla) (Hobbs et al. 1985). Mycelial genomic DNA of the representative isolate LDSG3-2 was extracted as template. The internal transcribed spacer (ITS) , translation elongation factor 1α gene (TEF) and β-tubulin (TUB2) regions were amplified. These loci were amplified using primer pairs ITS4/ITS5 (White, et al. 1990), EF1-728F/EF1-986R (Carbone and Kohn 1999) and Bt2a/Bt2b (Glass and Donaldson 1995), respectively. A BLAST search of GenBank showed ITS (MN960195), TEF (MN974483) and TUB2 (MN974482) sequences of the isolate were 99%, 100%, and 99% homologous with D. longicolla strains DL11 (MF125048, 557/563 bp), D55 (MN584792, 347/347 bp) and DPC-HOH-32 (MK161506, 502/504 bp). Maximum likelihood trees based on concatenated nucleotide sequences of the three genes were constructed using MEGA 7.0, and bootstrap values indicated the isolate was D. longicolla (Fig. S1-D). Pathogenicity testing was performed using isolate LDSG3-2 by depositing 5µl droplets of a conidial suspension (1 × 106 ml-1) into 5 artificially wounded leaves (using a sterile needle) of 10 healthy 3-month-old K. pinnata plants. An equal number of artificially wounded control leaves were inoculated with sterile water to serve as a negative control. The test was conducted three times. Plants were kept at 25°C in 80% relative humidity and observed for symptoms. Two weeks after inoculation, no symptoms were observed on control plants (Fig. S1-C-1) and all inoculated plants showed symptoms (Fig. S1-C-2) similar to those observed in the field. The fungus was re-isolated from the infected tissues and showed the same cultural and morphological characteristics of the strain inoculated and could not be isolated from the controls fulfilling Koch’s postulates. To our knowledge, this is the first report of leaf spot on K. pinnata caused by D. longicolla in China. This disease is of concern since Phomopsis diseases are common in K. pinnata fields and can cause significant reduction in yield. References: White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. DOI: 10.1016/0167-7799(90)90215-J Carbone, I., and Kohn, L. M. 1999. Mycologia. 91:553. DOI: 10.2307/3761358 Glass, N. L., and Donaldson, G. C. 1995. Appl. Environ. Microbiol. 61:1323. DOI: 10.1002/bit.260460112 Hobbs, T. W. et al. 1985. Mycologia. 77: 535. DOI: 10.2307/3793352


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 993-993 ◽  
Author(s):  
Y. Y. Li ◽  
Y. J. Wang ◽  
Z. K. Xie ◽  
R. Y. Wang ◽  
Y. Qiu ◽  
...  

Lily (Lilium spp.) is one of the most well-known horticultural crops, and plays an important economic role in China. In September 2011, wilted plants were observed on Lilium oriental hybrid cultivar ‘Sorbonne’ growing in Longde County, Ningxia Hui Autonomous Region, China. Disease symptoms included wilting, stem and root rot, brown spots of bulbs and then bulbs rotting and spalling from the basal disc, plus a progressive yellowing and defoliation of the leaves from the base. Diseased plants were sampled from fields. Small pieces of symptomatic bulbs, stems, and roots from 10 different plants were surface disinfected with 75% ethanol for 30 s, 3% sodium hypochlorite for 5 min, and then washed three times in sterilize distilled water. The tissues were placed onto Martin Agar (2) at 25°C for 7 days. Nine isolates with morphology similar to Fusarium were obtained from the diseased tissues. Isolates were transferred to potato dextrose agar (PDA) and carnation leaf agar (CLA) and incubated at 25°C. Seven were identified as Fusarium oxysporum and one was F. solani, which have been reported as pathogens of lily in China (1). The other isolate, when grown on PDA, rapidly produced dense, white aerial mycelium that became pink with age and formed red pigments in the medium. On CLA, macroconidia with three to five septate were abundant, relatively slender, and curved to lunate. Microconidia were abundant, oval or pyriform, and one to two celled. Chlamydospores were in chains with smooth exine. The rDNA internal transcribed spacer (ITS) region and a portion of the translation elongation factor 1-alpha (EF-1α) gene of the fungus were amplified, with universal primers ITS1/ITS4 and EF1/EF2 primers respectively (3) and sequenced. In addition, the β-tubulin gene (β-tub) of the fungus was amplified with modified primers Btu-F-F01 (5′-CAGACMGGTCAGTGCGTAA-3′) and Btu-F-R01 (5′-TCTTGGGGTCGAACATCTG-3′) (4). BLASTn analysis showed that the ITS sequences of the isolate (GenBank Accession No. JX989827) had 98.9% similarity with those of F. tricinctum (EF611092, JF776665, and HM776425) and the EF-1α sequences of the isolate (JX989828) had 98.1% similarity with those of F. tricinctum (EU744837 and JX397850). The β-tub sequences of the isolate (JX989829) had 99.0% similarity with those of F. tricinctum (EU490236 and AB587077). The isolate was tested for pathogenicity. Two-month-old ‘Sorbonne’ seedlings were inoculated by placing 5 ml of conidial suspension (about 106 conidia per ml) over the roots of plants in each pot. Control plants were treated with sterile water in the same way. Plants were placed in a greenhouse at 22 to 25°C with a 15-h photoperiod. There were eight plants per pot and three replicates for each treatment. After 3 weeks, 87.5% of the inoculated plants exhibited browning of the root tips, root rot, and yellowing of the leaves, while control plants were symptomless. The pathogen was reisolated from the infected roots and identified as F. tricinctum, thus fulfilling Koch's postulates. To our knowledge, this is the first report of Fusarium wilt of lily caused by F. tricinctum. This information will provide guidance for the control of lily wilt disease and add information useful for the production of lilies. References: (1) C. Li and J. J. Li. Acta Phytopathol. Sin. (in Chinese) 26:192, 1995. (2) J. P. Martin. Soil Sci. 38:215, 1950. (3) K. O'Donnell et al. Proc. Nat. Acad. Sci. U. S. A. 95:2044, 1998. (4) M. Watanabe et al. BMC Evol. Biol. 11:322. 2011.


Plant Disease ◽  
2021 ◽  
Author(s):  
Shuning Chen ◽  
Wei Sun ◽  
Huizhu Yuan ◽  
Xiaojing Yan

Gerbera (Gerbera jamesonii Bolus) is an important cut flower grown globally. In 2020, gerbera plants (Redaicaoyuan, Baimawangzi, and Hongditan cultivars) with roots, crowns, and stems rot were found in a greenhouse in Nanping, Fujian, China. Approximately 30% of the 60,000 plants showed symptoms. Diseased plants were stunted with chlorotic leaves. The leaves and flower heads were wilted and withered. Brown discoloration with red to black streaks occurred in the vascular system of the crown and stem. The stem pieces (3×3 mm) showing the symptom were surface-disinfected with 1% NaClO for 1 min and washed three times with sterilized water. The stem pieces were then dried and placed on potato dextrose agar (PDA) at 25℃ inside a dark chamber. Ten single-spored isolates were identified as Fusarium incarnatum based on morphological features. White to light brown mycelia were observed among the isolates on PDA medium. Falculate, multicelluar, straight to slightly curved macroconidia produced in monophialide sporodochia without distinctive foot shaped basal cell; and chlamydospores produced in some isolates (Leslie and Summerell). The size of macroconidia was 36.4 ± 5.20 × 4.6 ± 1.3 μm (n = 100) with 3 to 5 septates. Microconidia were mostly 0 to 1 septate measured 14.6 ± 1.9 × 2.6 ± 0.5 μm (n=100). Based on the morphological observation, isolates were further identified by molecular method. The ITS1/4 region combined with partial gene fragments of translation elongation factor (EF-1α, primer EF1/EF2, Geiser et al.) and calmodulin (CAM, primer CL1/CL2A, O’Donnell.) from the isolates were amplified and sequenced. All of the three tested isolates showed identical gene sequences. Sequences amplified from one represented isolate FIN-1 were submitted to Genbank. BLAST searches revealed that ITS1/4 (MW527088), EF-1α (MW556488), and CAM (MW556487) had 99.22%, 99.53%, 99.42% identity compared to F. incarnatum (MN480497, MN233577, and LN901596, respectively) in GenBank. FUSARIUM-ID (Geiser et al. 2004) analysis also showed 99 to 100% similarity with sequences of the F. incarnatum-equiseti species complex (FIESC) (FD_01636 for CAM, FD_01643 for EF-1α). The phylogenetic analysis was conducted using neighbor-joining algorithm based on the ITS, EF-1α, and CAM gene sequences. The isolate was clustered with F. incarnatum clade. Then, the pathogenicity of the fungus was confirmed by performing Koch’s postulates. Pure single-spored cultures were grown on carboxymethyl-cellulose (CMC) medium for sporulation. G. jamesonii plants used for pathogenicity tests were grown on sterilized potting soil in a plastic container to the ten-leaf stage prior to inoculation. Spores harvested from the CMC medium were adjusted to a concentration of 1×105 conidial/ml. Twelve healthy rooted gerbera seedlings were inoculated by drenching 10 ml of the conidial suspension onto roots. Twelve gerbera seedlings treated with 10 ml sterile water served as control treatments. Plants were grown in the glasshouse at temperatures of 23°C, relative humidity >70%, and 16 h light per day. After 10 days, blackening stems and withered leaf edges began to appear on inoculated seedlings, whereas control seedlings remained healthy. F. incarnatum was consistently re-isolated from the symptomatic stems, whereas no isolates were obtained from the control seedlings. The assay was conducted twice. To the best of our knowledge, this is the first report of F. incarnatum causing stem and root rot on G. jamesonii.


Plant Disease ◽  
2021 ◽  
Author(s):  
Nathali López-Cardona ◽  
YUDY ALEJANDRA GUEVARA ◽  
Lederson Gañán-Betancur ◽  
Carol Viviana Amaya Gomez

In October 2018, soybean plants displaying elongated black to reddish-brown lesions on stems were observed in a field planted to the cv. BRS Serena in the locality of Puerto López (Meta, Colombia), with 20% incidence of diseased plants. Symptomatic stems were collected from five plants, and small pieces (∼5 mm2) were surface sterilized, plated on potato dextrose agar (PDA) and incubated for 2 weeks at 25°C in darkness. Three fungal isolates with similar morphology were obtained, i.e., by subculturing single hyphal tips, and their colonies on PDA were grayish-white, fluffy, with aerial mycelium, dark colored substrate mycelium, and produced circular black stroma. Pycnidia were globose, black, occurred as clusters, embedded in tissue, erumpent at maturity, with an elongated neck, and often had yellowish conidial cirrus extruding from the ostiole. Alpha conidia were observed for all isolates after 30 days growth on sterile soybean stem pieces (5 cm) on water agar, under 25ºC and 12 h light/12h darkness photoperiod. Alpha conidia (n = 50) measured 6.0 – 7.0 µm (6.4 ± 0.4 µm) × 2.0 – 3.0 µm (2.5± 0.4 µm), were aseptate, hyaline, smooth, ellipsoidal, often biguttulate, with subtruncate base. Beta conidia were not observed. Observed morphological characteristics of these isolates were similar to those reported in Diaporthe spp. by Udayanga et al. (2015). DNA from each fungal isolate was used to sequence the internal transcribed spacer region (ITS), and the translation elongation factor 1-α (TEF1) gene, using the primer pairs ITS5/ITS4 (White et al. 1990) and EF1-728F/EF1- 986R (Carbone & Kohn, 1999), respectively. Results from an NCBI-BLASTn, revealed that the ITS sequences of the three isolates (GenBank accessions MW566593 to MW566595) had 98% (581/584 bp) identity with D. miriciae strain BRIP 54736j (NR_147535.1), whereas the TEF1 sequences (GenBank accessions MW597410 to MW597412) had 97 to 100% (330-339/339 bp) identity with D. ueckerae strain FAU656 (KJ590747). The species Diaporthe miriciae R.G. Shivas, S.M. Thomps. & Y.P. Tan, and Diaporthe ueckerae Udayanga & Castl. are synonymous, with the latter taking the nomenclature priority (Gao et al. 2016). According to a multilocus phylogenetic analysis, by maximum likelihood, the three isolates clustered together in a clade with reference type strains of D. ueckerae (Udayanga et al. 2015). Soybean plants cv. BRS Serena (growth stages V3 to V4) were used to verify the pathogenicity of each isolate using a toothpick inoculation method (Mena et al. 2020). A single toothpick colonized by D. ueckerae was inserted directly into the stem of each plant (10 plants per isolate) approximately 1 cm below the first trifoliate node. Noncolonized sterile toothpicks, inserted in 10 soybean plants served as the non-inoculated control. Plants were arbitrarily distributed inside a glasshouse, and incubated at high relative humidity (>90% HR). After 15 days, inoculated plants showed elongated reddish-brown necrosis at the inoculated sites, that were similar to symptoms observed in the field. Non-inoculated control plants were asymptomatic. Fungal cultures recovered from symptomatic stems were morphologically identical to the original isolates. This is the first report of soybean stem canker caused by D. ueckerae in Colombia. Due to the economic importance of this disease elsewhere (Backman et al. 1985; Mena et al. 2020), further research on disease management strategies to mitigate potential crop losses is warranted.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 847-847 ◽  
Author(s):  
M. Lazarotto ◽  
M. F. B. Muniz ◽  
R. F. dos Santos ◽  
E. Blume ◽  
R. Harakawa ◽  
...  

Pecan [Carya illinoinensis (Wangenh.) K. Koch] is an important producing nut tree that has been intensively cultivated in the state of Rio Grande do Sul (Brazil) in recent decades. This species is commonly grown in association with other crops and more often with cattle or sheep. An elevated incidence of the fungal genus Fusarium was observed during a quality control seed assay of pecan seeds obtained from orchards in the city of Anta Gorda (28°53′54.7″ S, 52°01′59.9″ W). Concomitantly, seedlings of this species, cultivated in a nursery, showed foliar necrosis, wilt, and root rot. The fungus was thereafter isolated from the seeds (from original seeds lots) and subcultured from single spores. Cultures were purified in order to perform pathogenicity tests. The isolated Fusarium sp. was increased on autoclaved wet corn kernels that were incubated for 14 days (1), and then were mixed with commercial substrate (sphagnum turf, expanded vermiculite, dolomitic limestone, gypsum, and NPK fertilizer) in plastic trays (capacity 7 L), with drainage holes. Twenty seeds were sowed and 90 days later, evaluations were undertaken. Forty percent of the seedlings presented symptoms, i.e., foliar necrosis and wilt owing to root rot. Fusarium sp. was re-isolated from the affected roots by transferring hyphal tips to potato dextrose agar (PDA) and carnation leaf agar (CLA) medium in petri dishes in order to identify the species morphologically. On PDA, the colony pigmentation was yellowish brown and the aerial mycelium was whitish to peach; macroconidia were relatively long and narrow (31.75 × 4.02 μm), with 5 septa on average, and whip-like bent apical cells (2). Chlamydospores were not observed on PDA or CLA. Primer pairs ITS1 and ITS4 (3) and EF1-T and EF1-1567R (4) were employed to amplify the internal transcribed spacer (ITS) and elongation factor-1α (TEF 1-α) regions, respectively. The resulting DNA sequences showed 99% for ITS and 98% for TEF 1-α similarity with Fusarium equiseti (Corda) Sacc. and phylogenetic analysis grouped it with sequences of this species. The consensus sequence was submitted to GenBank and received the accession numbers KC810063 (ITS) and KF601580 (TEF 1-α). The pathogen was re-isolated on PDA and CLA substrate in order to complete Koch's postulates. The pathogenicity test was repeated with the same conditions described before and the results were confirmed. No symptoms were observed on the control seedlings. This species is considered a weak parasite (2); however, it has been reported causing wilt in Coffea arabica in Brazil (5). This pathogen could cause serious damage and high losses to seedling in commercial nurseries. Besides that, it could also carry the disease to the field causing further damage on established plants. To our knowledge, this is the first to report of F. equiseti causing foliar necrosis and wilt on C. illinoinensis in Brazil. References: (1) L. H. Klingelfuss et al. Fitopatol. Brasil. 32:1, 2007. (2) W. Gerlach and H. Nirenberg. The Genus Fusarium – a Pictorial Atlas. Biologische Bundesanstalt für Land- und Forstwirtschaft, Braunschweig, Germany, 1982. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, CA, 1990. (4) S. A. Rehner and E. A. Buckley. Mycologia 97:84, 2005. (5) L. H. Pfenning and M. F. Martins. Page 283 in: Simpósio de Pesquisa dos Cafés do Brasil, 2000.


Sign in / Sign up

Export Citation Format

Share Document