scholarly journals Eight Colletotrichum Species, Including a Novel Species, Are Associated With Areca Palm Anthracnose in Hainan, China

Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1369-1377
Author(s):  
Xueren Cao ◽  
Xiangming Xu ◽  
Haiyan Che ◽  
Jonathan S. West ◽  
Daquan Luo

Genus Colletotrichum is one of the most important genera of plant-pathogenic fungi affecting numerous species, particularly tropical and subtropical crops and fruit trees. In this study, 43 Colletotrichum strains were isolated from areca palm leaves with anthracnose symptoms in 11 areca palm plantations in eight counties of Hainan, China. Based on the morphology, phylogenetic analysis of six loci (internal transcribed spacer, actin, chitin synthase 1, glyceraldehyde-3-phosphate dehydrogenase, β-tubulin, and mating type locus MAT1-2), and pathogenicity tests, eight Colletotrichum species were distinguished, comprising five previously known species (C. cordylinicola, C. fructicola, C. gloeosporioides, C. siamense, and C. tropicale), one unidentified Colletotrichum species, a new species (C. arecicola) in the gloeosporioides species complex, and C. karstii in the boninense species complex. C. siamense was the most common species found in areca palm in Hainan, followed by C. arecicola. Pathogenicity tests showed that all eight species could cause anthracnose symptoms on areca palm leaves using a wound inoculation method and that the isolates from the gloeosporioides species complex caused larger lesions than the isolates from the boninense species complex. Further research is needed to understand the epidemiology of these pathogenic species on areca palm in order to develop management strategies.

Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2571-2584
Author(s):  
Longhai Xue ◽  
Yongwen Zhang ◽  
Tingyu Duan ◽  
Mengyuan Li ◽  
James F. White ◽  
...  

In recent years in China, leaf spot caused by Colletotrichum species has been an emerging disease of Philodendron tatei cv. Congo. From 2016 to 2019, typical symptoms, appearing as circular or ovoid, sunken, and brown lesions with a yellow halo, were commonly observed on P. tatei cv. Congo in and around Lanzhou, Gansu Province, China. Conidiomata were often visible on infected leaf surfaces. Leaf disease incidence was approximately 5 to 20%. A total of 126 single-spored Colletotrichum isolates were obtained from leaf lesions. Multilocus phylogenetic relationships were analyzed based on seven genomic loci (ITS, ACT, GAPDH, HIS3, CAL, CHS-1, and TUB2) and the morphological characters of the isolates determined. These isolates were identified as three Colletotrichum species in this study. A further 93 isolates, accounting for 74% of all Colletotrichum isolates, were described as new species and named as Colletotrichum philodendricola sp. nov. after the host plant genus name, Philodendron; another two isolates were named as C. pseudoboninense sp. nov. based on phylogenetic and morphological relativeness to C. boninense; the other 31 isolates, belonging to the C. orchidearum species complex, were identified as a known species—C. orchidearum. Both novel species C. philodendricola and C. pseudoboninense belong to the C. boninense species complex. Pathogenicity tests by both spray and point inoculations confirmed that all three species could infect leaves of P. tatei cv. Congo. For spray inoculation, the mean infection rate of leaves on the three species was only 4.7% (0 to 12%), and the size on lesions was mostly 1 to 2 mm in length. For point inoculation, 30 days after nonwounding inoculation, the infection rate on leaves was 0 to 35%; in wounding inoculation, the infection rate of leaves was 35 to 65%; wounding in healthy leaves greatly enhanced the pathogenicity of these three species to P. tatei cv. Congo; however, the sizes of lesions among the three species were not significantly different. To our knowledge, this is the first report of Colletotrichum species associated with anthracnose diseases on P. tatei cv. Congo. Results obtained in this study will assist the disease prevention and appropriate management strategies.


2019 ◽  
Vol 42 (1) ◽  
pp. 1-35 ◽  
Author(s):  
M. Fu ◽  
P.W. Crous ◽  
Q. Bai ◽  
P.F. Zhang ◽  
J. Xiang ◽  
...  

Colletotrichum species are plant pathogens, saprobes, and endophytes on a range of economically important hosts. However, the species occurring on pear remain largely unresolved. To determine the morphology, phylogeny and biology of Colletotrichum species associated with Pyrus plants, a total of 295 samples were collected from cultivated pear species (including P. pyrifolia, P. bretschneideri, and P. communis) from seven major pear-cultivation provinces in China. The pear leaves and fruits affected by anthracnose were sampled and subjected to fungus isolation, resulting in a total of 488 Colletotrichum isolates. Phylogenetic analyses based on six loci (ACT, TUB2, CAL, CHS-1, GAPDH, and ITS) coupled with morphology of 90 representative isolates revealed that they belong to 10 known Colletotrichum species, including C. aenigma, C. citricola, C. conoides, C. fioriniae, C. fructicola, C. gloeosporioides, C. karstii, C. plurivorum, C. siamense, C. wuxiense, and two novel species, described here as C. jinshuiense and C. pyrifoliae. Of these, C. fructicola was the most dominant, occurring on P. pyrifolia and P. bretschneideri in all surveyed provinces except in Shandong, where C. siamense was dominant. In contrast, only C. siamense and C. fioriniae were isolated from P. communis, with the former being dominant. In order to prove Koch's postulates, pathogenicity tests on pear leaves and fruits revealed a broad diversity in pathogenicity and aggressiveness among the species and isolates, of which C. citricola, C. jinshuiense, C. pyrifoliae, and C. conoides appeared to be organ-specific on either leaves or fruits. This study also represents the first reports of C. citricola, C. conoides, C. karstii, C. plurivorum, C. siamense, and C. wuxiense causing anthracnose on pear.


Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2034-2045 ◽  
Author(s):  
Ana López-Moral ◽  
Maria Carmen Raya-Ortega ◽  
Carlos Agustí-Brisach ◽  
Luis F. Roca ◽  
Maria Lovera ◽  
...  

Almond anthracnose is a serious and emerging disease in several countries. All isolates causing almond anthracnose have been assigned to the Colletotrichum acutatum species complex, of which only C. fioriniae and C. godetiae have been associated with the disease to date. Here, we characterized Colletotrichum isolates from almond fruit affected by anthracnose in the Andalusia region. Two Colletotrichum isolates causing olive anthracnose were included for comparison. Morphological characteristics were useful for separating the isolates into groups based on colony morphology. Pathogenicity tests in almond, olive, and apple fruit showed differences in virulence and some degree of pathogenic specialization among isolates. Molecular characterization allowed clear identification of the Colletotrichum isolates tested. The olive isolates were identified as C. godetiae and C. nymphaeae, both previously identified in Andalusian olive orchards. Two phylogenetic species were identified among the almond isolates: C. godetiae, with gray colonies, which is well known in other countries, and C. acutatum, with pink-orange colonies. This species identification differs from those of pink-colony subpopulations described in other countries, which are C. fioriniae. Therefore, this study is also the first report of a new species of Colletotrichum causing almond anthracnose within the C. acutatum species complex.


2015 ◽  
Vol 61 (10) ◽  
pp. 753-761 ◽  
Author(s):  
Pervaiz A. Abbasi ◽  
Salah Eddin Khabbaz ◽  
Brian Weselowski ◽  
Liang Zhang

Field strains of tomato bacterial spot pathogen (Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri) were characterized for sensitivity to copper and species composition. A total of 98 strains were isolated from symptomatic leaf and fruit samples collected from 18 tomato fields in Ontario. In greenhouse pathogenicity tests, most of the field strains caused severe (37 strains) to highly severe (23 strains) symptoms on ‘Bonny Best’ tomato plants, whereas 38 strains caused moderate symptoms. In MGY agar plates amended with various concentrations of copper sulfate, 11 strains were completely sensitive (no growth) and 87 strains were resistant (grew on 1.0 mmol/L or higher copper concentration). PCR analysis of the hrp gene cluster followed by restriction digestion with HaeIII and sequencing identified X. gardneri (35 strains) and X. perforans (26 strains) as predominant species and X. euvesicatoria and X. vesicatoria as less common species in Ontario tomato fields. Separation of field strains into various species was also confirmed with starch hydrolysis activity on agar medium. Moreover, 72 field strains produced shiny greenish-yellow colonies surrounded by a milky zone on xanthomonad differential (Xan-D) medium, and the colonies of 26 strains did not produce a milky zone. Thirty-four strains could not be clustered into any species and 25 of those strains were negative for the hrp gene PCR and also did not produce a milky zone around colonies on Xan-D medium. Our results suggest a widespread existence of copper-resistant strains and an increase in X. perforans strains of bacterial spot pathogen in Ontario. This information on copper resistance and species composition within bacterial spot pathogens in Ontario will be helpful for developing effective disease management strategies, making cultivar selection, and breeding new tomato cultivars.


Phytotaxa ◽  
2017 ◽  
Vol 314 (1) ◽  
pp. 55 ◽  
Author(s):  
RUVISHIKA S. JAYAWARDENA ◽  
ERIO CAMPORESI ◽  
ABDALLAH M. ELGORBAN ◽  
ALI H. BAHKALI ◽  
JIYE YAN ◽  
...  

Colletotrichum sonchicola, sp. nov. from Sonchus sp. (dandelion tribe) in Forlì-Cesena Province, Italy, is introduced using morphological and molecular data. Combined phylogenetic analysis of ITS, GAPDH, CHS, ACT and TUB2 sequence data demonstrate that C. sonchicola is a distinct species within the dematium species complex. The new species is illustrated and compared with related taxa. This provides the first record of a Colletotrichum species from the genus Sonchus.


Author(s):  
S. Bincader ◽  
R. Pongpisutta ◽  
C. Rattanakreetakul

Background: Anthracnose disease caused by the genus Colletotrichum is one of the crucial problems occurring in the field, along with postharvest diseases and affects mango quality in Thailand. In particular, the Nam Dork Mai See Tong cultivar, which is highly susceptible to the disease, is an important product for exportation. Methods: In this research, thirty-seven Colletotrichum species isolate were obtained from anthracnose disease in mango cv. Nam Dork Mai See Tong in three provinces in Thailand. Morphological studies and molecular techniques using species-specific primers were investigated; moreover, the diversity of pathogens was analyzed using PCR amplification of inter simple sequence repeats (ISSRs) with 6 primers, including pathogenicity tests. Result: Morphological studies and molecular detection with species-specific primers revealed that 32 isolates belonged to the C. gloeosporioides species complex and 5 isolates to the C. acutatum species complex. The genetic diversity of pathogens was analyzed. PCR amplification using 6 ISSR primers produced 35 polymorphic bands. These bands were used to construct UPGMA, in which cluster analysis divided the 37 isolates into 3 main groups and 8 subgroups at 61-73% Jaccard similarity coefficient with cophenetic correlation (r) = 0.6781. The ISSR technique showed the greatest genetic variation among isolates collected from different locations. Hence, a study based on ISSR markers was profitable to investigate the phylogenetic relationship of the genus Colletotrichum. Pathogenicity tests revealed that PC006 (Ca) and CS005 (Cg) showed the highest aggressiveness, with disease incidences of 84.74 and 80.90%, respectively. This study indicates that the diversity of pathogenic Colletotrichum species related to mango plantations in Thailand is increasing.


2021 ◽  
Vol 11 (12) ◽  
pp. 5452
Author(s):  
Anna Poli ◽  
Elena Bovio ◽  
Iolanda Perugini ◽  
Giovanna Cristina Varese ◽  
Valeria Prigione

The genus Corollospora, typified by the arenicolous fungus Corollospora maritima, consists of twenty-five cosmopolitan species that live and reproduce exclusively in marine environments. Species of this genus are known to produce bioactive compounds and can be potentially exploited as bioremediators of oil spill contaminated beaches; hence their biotechnological importance. In this paper, nine fungal strains isolated in the Mediterranean Sea, from the seagrass Posidonia oceanica (L.) Delile, from driftwood and seawater contaminated by an oil spill, were investigated. The strains, previously identified as Corollospora sp., were examined by deep multi-loci phylogenetic and morphological analyses. Maximum-likelihood and Bayesian phylogeny based on seven genetic markers led to the introduction of a new species complex within the genus Corollospora: Corollospora mediterranea species complex (CMSC). The Mediterranean Sea, once again, proves an extraordinary reservoir of novel fungal species with a still undiscovered biotechnological potential.


Plant Disease ◽  
2019 ◽  
Vol 103 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Xueren Cao ◽  
Xiangming Xu ◽  
Haiyan Che ◽  
Jonathan S. West ◽  
Daquan Luo

Colletotrichum gloeosporioides and C. acutatum have been reported to be causal agents of anthracnose disease of rubber tree. Recent investigations have shown that both C. gloeosporioides and C. acutatum are species complexes. The identities of Colletotrichum species causing anthracnose disease of rubber tree in Hainan, China, are unknown. In this study, 106 isolates obtained from rubber tree with symptoms of anthracnose were collected from 12 counties of Hainan and identified at the species complex level based on the ITS sequences and colony morphologies. Seventy-four isolates were identified as C. gloeosporioides species complex and the other 32 isolates as C. acutatum species complex. Forty-two isolates were selected for further multilocus phylogenetic analyses in order to identify the isolates to the species level. Twenty-six isolates from the C. gloeosporioides species complex were characterized for partial sequences of seven gene regions (ACT, TUB2, CHS-1, GAPDH, ITS, ApMat, and GS), and the other 16 isolates from the C. acutatum species complex for five gene regions (ACT, TUB2, CHS-1, GAPDH, and ITS). Three species were identified: C. siamense and C. fructicola from the C. gloeosporioides species complex, and a new species C. wanningense from the C. acutatum species complex. Artificial inoculation of rubber tree leaves confirmed the pathogenicity of the three species. The present study improves the understanding of species causing anthracnose on rubber tree and provides useful information for the effective control of the disease.


MycoKeys ◽  
2018 ◽  
Vol 40 ◽  
pp. 29-51 ◽  
Author(s):  
Salvatore Vitale ◽  
Dalia Aiello ◽  
Vladimiro Guarnaccia ◽  
Laura Luongo ◽  
Massimo Galli ◽  
...  

A new canker and decline disease of pistachio (Pistaciavera) is described from Sicily (Italy). Observations of the disease and sampling of the causal agent started in spring 2010, in the area where this crop is typically cultivated, Bronte and Adrano (Catania province) and later extended to the Agrigento and Caltanissetta provinces. Isolations from the margins of twig, branch and stem cankers of declining plants resulted in fungal colonies with the same morphology. Pathogenicity tests on 5-year-old potted plants of Pistaciavera grafted on P.terebinthus reproduced similar symptoms to those observed in nature and the pathogen was confirmed to be a coloniser of woody plant tissue. Comparison of our isolates with the type of the apparently similar Asteromellapistaciarum showed that our isolates are morphologically and ecologically different from A.pistaciarum, the latter being a typical member of Mycosphaerellaceae. Asteromellapistaciarum is lectotypified, described and illustrated and it is considered to represent a spermatial morph of Septoriapistaciarum. Multi-locus phylogenies based on two (ITS and LSU rDNA) and three (ITS, rpb2 and tub2) genomic loci revealed isolates of the canker pathogen to represent a new species of Liberomyces within the Delonicicolaceae (Xylariales), which is here described as Liberomycespistaciaesp. nov. (Delonicicolaceae, Xylariales). The presence of this fungus in asymptomatic plants with apparently healthy woody tissues indicates that it also has a latent growth phase. This study improves the understanding of pistachio decline, but further studies are needed for planning effective disease management strategies and ensuring that the pathogen is not introduced into new areas with apparently healthy, but infected plants.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1581-1581 ◽  
Author(s):  
H.-H. Xie ◽  
J.-G. Wei ◽  
F. Liu ◽  
X.-H. Pan ◽  
X.-B. Yang

Mulberry (Morus alba L.) is an important cash crop and medicinal plant that has been cultivated for more than 5,000 years in China. The area of mulberry production in Guangxi Province is 45% of total production in China, with 1.3 million ha planted. In recent years, a mulberry root rot occurred in Heng County covering all the mulberry planting farms. Observations of 200 diseased plants were made. The xylem of infected roots first turned brown, and then became black followed by cortex rot. The xylem and cortex of infected roots were easily separated. The xylem of the stem of symptomatic plants was also brown and the bark was slightly darker than normal. Leaves of diseased plants turned yellow and wilted, but the wilted leaves remained on the affected branches for about 3 weeks. All affected branches and stem dried after a month. The affected area was 12,000 ha with incidences varying from 13 to 52%. About 8% of young mulberry trees died in severely infested orchards. The disease caused more than $3 million in losses within a year in Heng County alone. The causal fungus was isolated from xylem tissues of symptomatic roots of 62 mulberry plants with an isolation rate of 90%. Pathogenicity test was made by inoculating 5-month-old healthy mulberry plants with PDA plugs (5 × 5 mm) grown 5 days with viable mycelia of the fungus. Nine healthy plants were wounded on the roots with a sterile knife, and mycelial plugs of three Lasiodiplodia theobromae (Pat.) Griffon & Maubl isolates were placed on the wounds, covered with sterile moist cotton, and wrapped with Parafilm. Nine control plants were treated with PDA plugs. The test was repeated three times. All treated plants were kept in a greenhouse at ~28°C and 40% RH. After 3 days, the root xylem of inoculated plants turned brown and gradually became dark, similar to symptoms observed in the field. After 8 days, inoculated seedlings gradually wilted, and all the treated plants died after 11 days with leaves undetached. The fungus was re-isolated from all nine diseased plants and no symptoms were observed on the roots of control plants. The causal agent, of which conidia were dark brown, one-septate, thick walled, and ellipsoid with 4 or 6 vertical lines of dashes, 12.50 to 13.75 × 13.75 to 25.63 μm (n = 100), was identified as L. theobromae based on morphological characters described by Punithalingam (3) and sequences of the ITS region of rDNA using primers ITS1 and ITS4 and EF1-α using primers EF728F and EF986R. The ITS sequence (HG917932) was similar to the ITS sequences of AY640255 (CBS164.96) and AY236952 (CMW9074) in GenBank with identities of 98.8 and 99.8%, respectively. The EF1-α sequence HG917934 was similar to that of AY640258 (CBS164.96) and AY236901 (CMW9074) with identities of 99.7 and 99.7%, respectively. L. theobromae is a cosmopolitan fungus causing both field and storage diseases on more than 280 plant species including crops, fruits, and cash fruit trees (1,2,5). Mulberry root rot caused by L. theobromae has been reported in India (4) and ours is the first report in China. This finding clarifies the pathogen of mulberry root rot previously thought as Fusarium sp. in China, which is critical to develop management strategies to control this disease. References: (1) N. M. Celiker and T. J. Michailides. New Dis. Rep. 25:12, 2012. (2) I. H. Fischer et al. Australia Plant Dis. Notes 3:116, 2008. (3) E. Punithalingam. Botryodiplodia theobromae. CMI Descriptions of Pathogenic Fungi and Bacteria No. 519. CAB International, Wallingford, UK, 1976. (4) N. V. Radhakrishnan et al. Indian Phytopathol. 48:490, 1995. (5) B. C. Sutton. The Coelomycetes. Commonwealth Mycology Institute, Kew, Surrey, England, 1980.


Sign in / Sign up

Export Citation Format

Share Document