scholarly journals Relationships of Preharvest Weather Conditions and Soil Factors to Susceptibility of Sweetpotato to Postharvest Decay Caused by Rhizopus stolonifer and Dickeya dadantii

Plant Disease ◽  
2015 ◽  
Vol 99 (6) ◽  
pp. 848-857 ◽  
Author(s):  
Brooke A. Edmunds ◽  
Christopher A. Clark ◽  
Arthur Q. Villordon ◽  
Gerald J. Holmes

Postharvest soft rots of sweetpotato caused by Rhizopus stolonifer (Rhizopus soft rot) and Dickeya dadantii (bacterial root rot) occur sporadically and can result in significant losses. A 3-year field study related preharvest conditions, including soil texture, chemistry, and fertility; air temperature; soil temperature and moisture; and various cultural practices (153 total variables), to postharvest susceptibility to both diseases in 75 sweetpotato fields in North Carolina and 63 sweetpotato fields in Louisiana. Storage roots were sampled from each field, cured, stored, and inoculated with each pathogen after 100 to 120 days in storage. Disease susceptibility was measured as incidence of diseased storage roots 10 days following inoculation. There was wide variation from field to field in incidence of both diseases (0 to 100% for Rhizopus soft rot and 5 to 95% for bacterial root rot) in both states in each year. Correlations between disease incidence and each of the preharvest variables revealed numerous significant correlations but the variables that correlated with disease incidence were different between North Carolina and Louisiana. Models for both diseases were built by first using forward stepwise regression to identify variables of interest, followed by a mixed-model analysis to produce a final reduced model. For North Carolina fields, postharvest Rhizopus soft rot susceptibility was described by the percentage of the soil cation exchange capacity occupied by calcium, amount of plant-available soil phosphorus, percent soil humic matter, mean air temperature, mean volumetric soil moisture at 40 cm in depth, and mean soil temperature at 2 cm in depth. Postharvest bacterial soft rot susceptibility was described by soil pH and the number of days of high soil temperature late in the season. For Louisiana fields, Rhizopus soft rot susceptibility was described by a complex of variables, including late-season air and soil temperature and late-season days of extreme soil moisture. For bacterial root rot, days of low air temperature and days of high soil temperature late in the season as well as days of low soil moisture best described variation. Although the influence of preharvest variables on postharvest susceptibility was profound for each disease, the complexity of factors involved and differences between the data for the two states makes development of a predictive system extremely difficult.

Plant Disease ◽  
1998 ◽  
Vol 82 (1) ◽  
pp. 129-129 ◽  
Author(s):  
C. A. Clark ◽  
M. W. Hoy ◽  
J. P. Bond ◽  
C. Chen ◽  
Y.-K. Goh ◽  
...  

Bacterial root and stem rot of sweetpotato (Ipomoea batatas (L.) Lam.) was first fully characterized in the U.S. in 1977 (2). It was thought to be caused exclusively by Erwinia chrysanthemi. Although a previous report described sweetpotato as a host for E. carotovora subsp. carotovora, based on artificial inoculations, others have reported that neither E. carotovora subsp. carotovora nor E. carotovora subsp. atroseptica decay sweetpotato storage roots (1). In October 1995, storage roots of sweetpotato cv. Beauregard were received from St. Landry Parish, LA, that displayed typical bacterial root rot. Isolations from these roots yielded bacteria that showed a similarity of 0.945 to E. carotovora subsp. carotovora with the Biolog GN Bacterial Identification System (version 3.50). This isolate (Ecc-LH) also differed from isolates of E. chrysanthemi (Ech) from sweetpotato and other hosts in that it was insensitive to erythromycin, did not produce phosphatase or lecithinase, and did not produce gas from glucose. Ecc-LH differed from known strains of E. carotovora subsp. atroseptica in that it did not produce reducing substances from sucrose or acid from palatinose. When Beauregard storage roots were inoculated by inserting micropipette tips containing 50 μl of 1.0 × 108 CFU/ml, both Ecc-LH and Ech-48 produced typical bacterial root rot symptoms. However, when they were compared by infectivity titrations at 28 to 32°C, Ecc-LH was less virulent than Ech-48. Ecc-LH had an ED50 of approximately 1.0 × 106 CFU/ml and did not cause appreciable disease below inoculum concentrations of 1.0 × 105, whereas Ech-48 had an ED50 of approximately 1.0 × 108 and caused soft rot at the lowest concentration tested, 1.0 × 103. Similar disease incidence was observed in infectivity titrations at 22 to 24°C, but Ech-48 caused less severe soft rot. E. carotovora subsp. carotovora was reisolated from inoculated storage roots and its identity was reconfirmed by Biolog. When terminal vine cuttings of Beauregard were dipped in 1.0 × 108 CFU/ml and planted in a greenhouse, bacterial stem rot symptoms developed on plants inoculated with Ech-48 at about 4 weeks postinoculation, or when new growth began. However, no symptoms developed on plants inoculated with Ecc-LH. This is the first report of natural occurrence of E. carotovora subsp. carotovora causing bacterial root rot of sweetpotato in Louisiana. E. chrysanthemi remains the most important pathogen causing bacterial soft rot in sweetpotato since it is widely associated with sweetpotato, is more virulent on storage roots and also causes a stem rot. E. carotovora subsp. carotovora can cause root rot, but has been isolated in only one location to date, is less virulent on storage roots, and apparently does not cause stem rot on the predominant cultivar in U.S. sweetpotato production, Beauregard. References: (1) C. A. Clark and J. W. Moyer. 1988. Compendium of Sweet Potato Diseases. American Phytopathological Society, St. Paul, MN. (2) N. W. Schaad and D. Brenner. Phytopathology 67:302, 1977.


1969 ◽  
Vol 93 (3-4) ◽  
pp. 149-171
Author(s):  
Jorge L. Lugo-Camacho ◽  
Miguel A. Muñoz ◽  
Juan Pérez-Bolívar ◽  
Gregory R. Brannon

Soil temperature measurements from a climate monitoring network in Puerto Rico were evaluated and the difference between mean summer and mean winter soil temperature, known as isotivity value, was calculated. Air and soil temperature was collected from five weather stations of the USDA-Natural Resources Conservation Service from sea level to 1,019 m above sea level and from different soil moisture regimes. Isotivity values ranged from 1.2 to 3.9° C with an average of 2.6° C. The 750-m elevation was identified as the limit between the isohyperthermic and isothermic soil temperature regimes in the perudic soil moisture regime in Puerto Rico. The greatest differences between mean annual soil temperature and mean annual air temperature were observed at Guánica, Combate and Guilarte (2.1 ° C) stations. The smallest differences were observed at Maricao (0.8° C) and Isabela (1.8° C) stations. The study also indicated that the mean annual soil temperature in Puerto Rico can be estimated by adding 1.8° C to the mean annual air temperature or by the equation y = -0.007x + 28.0° C. The equation indicates that 97 percent of the time the behavior of the mean annual soil temperature is a function of elevation. According to the updated soil temperature regime boundaries, eight soil series were established in the Soil Survey of San Germán Area. In an area under the isothermic soil temperature regime, four soil series were classified as Oxisols (Haploperox), two soil series as Inceptisols (Eutrudepts) and two soil series as Mollisols (Argiudolls). This is the first field recognition of the Haploperox soil great group in the United States and its territories.


2014 ◽  
Vol 5 (1) ◽  
pp. 174-182 ◽  
Author(s):  
Donald J. Brown ◽  
Ivana Mali ◽  
Michael R.J. Forstner

Abstract Through modification of structural characteristics, ecological processes such as fire can affect microhabitat parameters, which in turn can influence community composition dynamics. The prevalence of high-severity forest fires is increasing in the southern and western United States, creating the necessity to better understand effects of high-severity fire, and subsequent postfire management actions, on forest ecosystems. In this study we used a recent high-severity wildfire in the Lost Pines ecoregion of Texas to assess effects of the wildfire and postfire clearcutting on six microclimate parameters: air temperature, absolute humidity, mean wind speed, maximum wind speed, soil temperature, and soil moisture. We also assessed differences between burned areas and burned and subsequently clearcut areas for short-term survivorship of loblolly pine Pinus taeda seedling trees. We found that during the summer months approximately 2 y after the wildfire, mean and maximum wind speed differed between unburned and burned areas, as well as burned and burned and subsequently clearcut areas. Our results indicated air temperature, absolute humidity, soil temperature, and soil moisture did not differ between unburned and burned areas, or burned and burned and subsequently clearcut areas, during the study period. We found that short-term survivorship of loblolly pine seedling trees was influenced primarily by soil type, but was also lower in clearcut habitat compared with habitat containing dead standing trees. Ultimately, however, the outcome of the reforestation initiative will likely depend primarily on whether or not the trees can survive drought conditions in the future, and this study indicates there is flexibility in postfire management options prior to reseeding. Further, concerns about negative wildfire effects on microclimate parameters important to the endangered Houston toad Bufo (Anaxyrus) houstonensis were not supported in this study.


Plant Disease ◽  
2000 ◽  
Vol 84 (6) ◽  
pp. 661-664 ◽  
Author(s):  
D. M. Benson ◽  
L. F. Grand

A survey of Fraser fir Christmas trees in North Carolina for incidence of Phytophthora root rot was conducted during 1997 and 1998. Field sites (7- to 13-year-old trees) and nursery transplant beds (4- to 5-year-old trees) selected at random were surveyed based on foliar symptoms of Phytophthora root rot. Field sites were surveyed with a random transect method (>3,000 trees/field) or by counting all trees (<3,000 trees/field). Overall, incidence of Phytophthora root rot averaged 9% over the 58 field sites sampled, with a range of 0 to 75%. No relationship was found between number of years Fraser fir had been planted in the field site and disease incidence. Disease incidence did not increase as field sites were rotated through second or third crops of Fraser fir. Phytophthora spp. were recovered from 1.8% of asymptomatic trees sampled from 58 field sites across the state. P. cinnamomi accounted for 91% of the Phytophthora isolates recovered. In nursery transplant beds where a systematic sampling procedure was used, incidence of diseased trees averaged 2%, with a range of 0 to 12% across 16 locations. Recovery of Phytophthora spp. averaged 1.2% from root samples collected from 50 asymptomatic seedlings at each location. Isolates collected from the field and nursery transplant beds were grown on cornmeal agar incorporated with 0, 1, 1.25, 10, or 100 μg a.i. metalaxyl/ml. All 166 isolates of P. cinnamomi tested were sensitive to metalaxyl at 1 or 1.25 μg a.i. metalaxyl/ml. Although incidence of Phytophthora root rot has not increased in the state compared to a survey done in 1976 to 1977, the disease continues to limit production of Fraser fir in North Carolina.


2013 ◽  
Vol 43 (3) ◽  
pp. 209-223 ◽  
Author(s):  
Jana Krčmáŕová ◽  
Hana Stredová ◽  
Radovan Pokorný ◽  
Tomáš Stdŕeda

Abstract The aim of this study was to evaluate the course of soil temperature under the winter wheat canopy and to determine relationships between soil temperature, air temperature and partly soil moisture. In addition, the aim was to describe the dependence by means of regression equations usable for phytopathological prediction models, crop development, and yield models. The measurement of soil temperatures was performed at the experimental field station ˇZabˇcice (Europe, the Czech Republic, South Moravia). The soil in the first experimental plot is Gleyic Fluvisol with 49-58% of the content particles measuring < 0.01 mm, in the second experimental plot, the soil is Haplic Chernozem with 31-32% of the content particles measuring < 0.01 mm. The course of soil temperature and its specifics were determined under winter wheat canopy during the main growth season in the course of three years. Automatic soil temperature sensors were positioned at three depths (0.05, 0.10 and 0.20 m under soil surface), air temperature sensor in 0.05 m above soil surface. Results of the correlation analysis showed that the best interrelationships between these two variables were achieved after a 3-hour delay for the soil temperature at 0.05 m, 5-hour delay for 0.10 m, and 8-hour delay for 0.20 m. After the time correction, the determination coefficient reached values from 0.75 to 0.89 for the depth of 0.05 m, 0.61 to 0.82 for the depth of 0.10 m, and 0.33 to 0.70 for the depth of 0.20 m. When using multiple regression with quadratic spacing (modeling hourly soil temperature based on the hourly near surface air temperature and hourly soil moisture in the 0.10-0.40 m profile), the difference between the measured and the model soil temperatures at 0.05 m was −2.16 to 2.37 ◦ C. The regression equation paired with alternative agrometeorological instruments enables relatively accurate modeling of soil temperatures (R2 = 0.93).


2005 ◽  
Vol 95 (12) ◽  
pp. 1381-1390 ◽  
Author(s):  
Mahfuzur Rahman ◽  
Zamir K. Punja

The fungus Cylindrocarpon destructans (Zins) Scholten is the cause of root rot (disappearing root rot) in many ginseng production areas in Canada. A total of 80 isolates of C. destructans were recovered from diseased roots in a survey of ginseng gardens in British Columbia from 2002-2004. Among these isolates, 49% were classified as highly virulent (causing lesions on unwounded mature roots) and 51% were weakly virulent (causing lesions only on previously wounded roots). Pectinase and polyphenoloxidase enzymes were produced in vitro by C. destructans isolates when they were grown on pectin and phenol as a substrate, respectively. However, highly virulent isolates produced significantly (P < 0.001) higher enzyme levels compared with weakly virulent isolates. Histopathological studies of ginseng roots inoculated with a highly virulent isolate revealed direct hyphal penetration through the epidermis, followed by intracellular hyphal growth in the cortex. Subsequent cell disintegration and accumulation of phenolic compounds was observed. Radial growth of highly and weakly virulent isolates on potato dextrose agar was highest at 18 and 21°C, respectively and there was no growth at 35°C. Mycelial mass production was significantly (P ≤ 0.01) lower at pH 7.0 compared with pH 5.0. To study the effects of pH (5.0 and 7.0) and wounding on disease development, ginseng roots were grown hydroponically in Hoagland's solution. Lesions were significantly larger (P < 0.001) at pH 5.0 compared with pH 7.0 and wounding enhanced disease by a highly virulent isolate at both pHs. In artificially infested soil, 2-year-old ginseng roots were most susceptible to Cylindrocarpon root rot among all root ages tested (1 to 4 years) when evaluated using a combined scale of disease incidence and severity. Root rot severity was significantly (P < 0.002) enhanced by increasing the inoculum density from 3.45 × 102 CFU/g of soil to 1.86 × 103 CFU/g of soil. Disease severity was higher at 20°C compared with 15 and 25°C and at -0.02 MPa soil moisture compared with -0.005 and -0.001 MPa. A significant interaction between soil moisture and temperature was observed for root rot severity.


2018 ◽  
Vol 2 (1) ◽  
pp. 28-48
Author(s):  
Napsiah Heluth ◽  
J. Matinahoru ◽  
Fransina Latumahina

The research study aims to determine the ecological conditions of dusung and non dusung, and the role of the contribution to environmental conservation in Ureng Village. The research method used was purposive sampling with observation parameters were microclimate (CO2 content, air temperature, humidity), vegetation conditions and soil conditions (soil temperature, soil moisture, soil pH, soil moisture content, soil macrofauna and organic C) . The results of  Paired of each parameter measured mostly show a smaller calculated t value compared to the t0.05 table value (1.8595) which means that the parameter is not a real difference, ie for the air humidity, t count = 0.27,; soil pH, t count = 0.6; soil macrofauna, t count = -0.66 and vegetation, t count = 1.01. As for the parameters of CO2; air temperature, soil temperature, , soil water content and organic C, t value of CO2 gives the value t count = - 16.06; air temperature = -5.11; soil temperature = -3.62; soil moisture, t count = 2,16; soil water content = 8.47, and C-Organic = 8.53; t count value which is greater than t table value which shows that there is a significant difference between CO2, air temperature, soil temperature, soil moisture, soil water content and C-Organic content in the dusung area which is greater than in the non-dusung area. From the results of the analysis it is known that dusung has a better role in environmental conservation when compared to non dusung which is indicated by the value of CO2 air temperature, soil temperature, soil moisture, soil water content and C-organic content.


Author(s):  
M. Saratha ◽  
K. Angappan ◽  
S. Karthikeyan ◽  
S. Marimuthu ◽  
K. Chozhan

Aims: To record the occurrence of mulberry root rot disease, epidemiology, interaction of weather and soil parameters with the soil-borne pathogens in Western zone of Tamil Nadu during 2019-2020. Study Design: Survey. Place and Duration of Study: Surveyed in Coimbatore, Tiruppur, Erode, Dharmapuri and Krishnagiri districts of Tamil Nadu. Laboratory experiments were carried out at Department of Sericulture & Department of Plant Pathology, Tamil Nadu Agricultural University (TNAU), Coimbatore between July 2019 and Jan 2021. Methodology: Per cent disease incidence of root rot was recorded in all surveyed gardens. To analyze the soil and weather parameters, the composite soil samples were subjected to textural analysis and weather data were collected from TNAU Agro Climate Research Centre. To predict soil temperature for all surveyed locations, the model regression equations were derived. The correlation analysis was done between per cent disease incidence, weather and soil parameters. Results: The highest disease incidence was recorded in Nallampalli block of Dharmapuri district (54 per cent) whereas the lowest in Udumalaipettai block of Tiruppur district (0.06 per cent). The infected mulberry root samples yielded complex of soil-borne pathogens including Macrophomina phaseolina, Lasiodiplodia theobromae, Fusarium sp., and pathogenicity was proved. The results revealed that root rot incidence was recorded in all types of cultivars, significantly in ruling variety V1 irrespective of its age, soil type, spacing, and irrigation method. Soil parameters like texture, temperature and moisture content were found to augment the disease. Per cent disease incidence had significantly positive correlation with the weather factors like air and soil temperature whereas negative correlation with relative humidity and rainfall. Conclusion: Synergism of abiotic stress factors hinders the mulberry plant health and increases its susceptibility to the soil-borne pathogens.


1950 ◽  
Vol 1 (2) ◽  
pp. 132
Author(s):  
HR Angell

Three steamed soils, limed and not limed, two hosts, and one isolate of Pythium ultimum were used in an experiment. The organism, isolated from peas germinating in limed Belanglo soil, was pathogenic to both hosts. The incidence of seedling blight of peas in the three reinfested soils varied significantly. On poppy, on two of the reinfested soils, it also varied significantly, but inversely to the incidence on peas. On peas in the first sowing it was not affected by liming the soil; on poppy it was significantly reduced. Seedling blight of both hosts was associated with one organism. The contrasting results could not be correlated with the uniform conditions of soil temperature, air temperature, and soil moisture; on any one soil or soil treatment they could not be ascribed to the prevailing uniform aeration, reaction, microflora, and microbial antagonism The only conditioning factor that was varied was the steamed soil, or steamed soil modified by adding lime. Differences in the incidence of disease were associated with variation of the conditioning factor and the host. Seedling blight of peas, resulting from natural reinfestation, occurred in earlier resowings in limed than in unlimed soils. Physiogenic seedling blight of poppy also occurred, causing total loss on one soil and smaller percentages of loss on the other soils.


Sign in / Sign up

Export Citation Format

Share Document