scholarly journals Control of Downy Mildew in Greenhouse-Grown Cucumbers Using Blue Photoselective Polyethylene Sheets

Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 999-1004 ◽  
Author(s):  
Reuven Reuveni ◽  
Michael Raviv

Six types of polyethylene sheets with or without a blue pigment, having an absorption peak at the yellow part of the spectrum (580 nm), in combination with three levels of UV-B (280 to 320 nm) absorbance, were investigated for their effects on sporangial production and colonization of Pseudoperonospora cubensis on cucumbers in growth chambers. The effect of these photoselective sheets on the epidemiology of downy mildew in greenhouse-grown cucumbers has been investigated in several locations. The addition of the blue pigment to the films resulted in a significant inhibition of colonization and sporangial production of P. cubensis, whereas filtration of the UV spectrum enhanced the colonization but had no effect on the sporangial production. The appearance of the first symptom-bearing plants was delayed under the blue covers, and consequently, a significant reduction in the disease incidence of downy mildew was recorded under all blue sheets at each corresponding level of UV-B transmittance in five different field experiments through four seasons. Regardless of the differences in disease incidence, there were no significant differences among the yields that were obtained under the various sheets, probably due to the lower photosynthetically active radiation transmissivity of the blue films. The optimal features required for a desirable commercial sheet are discussed.

Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 874-874 ◽  
Author(s):  
Y. Cohen ◽  
A. E. Rubin ◽  
M. Galperin

The oomycete Pseudoperonospora cubensis attacks members of the Cucurbitaceae, causing severe foliage damage especially to cucumber and melon. Recently, new pathotypes of this oomycete appeared in Israel (2) and Italy (1) and highly aggressive isolates appeared in the United States (3). Since oospores of P. cubensis were rarely seen and sexual propagation by oospores was never reported (4), it is assumed that it propagates clonally by sporangia. Here we report on sexual reproduction of P. cubensis under controlled conditions in the laboratory. We found that field isolates belonging to the old pathotype 3 or to the new pathotype 6 (2) inoculated singly onto detached leaves of cucurbits in growth chambers at 15 or 20°C produced no oospores, even after prolonged incubation periods. However, when sporangia of some paired field isolates were mixed together at a 1:1 ratio, similarly inoculated onto detached leaves, and incubated at 15 or 20°C, numerous oospores (up to ~300/cm2) were formed in the mesophyll within 6 to 11 days, depending on the isolates pair, the host inoculated, and temperature. Oospores were also formed at 12.5°C but not at 25°C. Oospores developed in intact plants when kept at 15 or 20°C under a humidity-saturated atmosphere during disease development. Oospores were round, light brown to brown with an average diameter of ~40 μm. Oospores were produced in Cucumis sativum (cvs. Nadiojni and Dalila) and Cucumis melo (cvs. Ananas-Yokneam and Ein-Dor) but not in Cucurbita pepo (cv. Arlika, Beiruti), C. moschata (cv. Dalorit), or C. maxima (cv. Tripoli). To verify that oospores are infective, cucumber or melon leaves containing oospores were homogenized in water. The homogenate was twice brought to dryness at 25 to 30°C in petri dishes to differentially kill the vegetative structures of the pathogen (sporangia, cystospores, zoospores, and mycelia), resuspended in water, and inoculated onto detached leaves of various cucurbits in growth chambers at 15 or 20°C. Downy mildew lesions carrying sporangia appeared within 7 to 20 days in leaves of Cucumis sativum, Cucumis melo, and C. moschata but not in C. pepo or C. maxima. The recombinant origin of the F1 offspring isolates was confirmed by mefenoxam sensitivity tests, random amplified polymorphic DNA, and simple sequence repeat analyses. F1 progeny isolates of some crosses lost pathogenicity to C. moschata or C. maxima, toward which one of their parents was pathogenic, while others gained pathogenicity to Luffa cylindrica or Citrullus lanatus toward which neither parent was pathogenic. Data confirmed that isolates of P. cubensis can mate to produce oospores, especially under constant humidity conditions; such oospores are infective to cucurbits and F1 progeny isolates show altered sensitivity to fungicides or altered host range relative to their parents. To our knowledge, this is the first report of oospore formation by P. cubensis in the laboratory and on their pathogenicity to cucurbits. Reasons for the parallel appearance of new pathotypes of P. cubensis in Israel in 2002 (2) and Italy in 2003 (1) and the reemergence of highly aggressive isolates of the pathogen in the United States in 2004 (3) are not known. They may be related to oospore production and sexual recombination in P. cubensis. References: (1) C. Cappelli et al. Plant Dis. 87:449, 2003. (2) Y. Cohen et al. Phytoparasitica 31:458, 2003. (3) G. J. Holmes et al. Am. Veg. Grower. February, 14-15, 2006. (4) A. Lebeda and Y. Cohen. Eur. J. Plant Pathol.129:157, 2011.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 205 ◽  
Author(s):  
Lidan Falach-Block ◽  
Yariv Ben-Naim ◽  
Yigal Cohen

Downy mildew in sweet basil (Ocimum basilicum L.) caused by the oomycete pathogen Peronospora belbahrii Thines was first recorded in Israel in 2011. Within one year, the pathogen has spread all over the country, causing devastating economic damage to basil crops. Similar outbreaks were reported in Europe, the USA, and Asia. Seed transmission and seedling trade were suggested as possible explanations for this rapid spread. Here, we show that P. belbahrii can develop systemically in artificially inoculated basil plants in growth chambers. It may reach remote un-inoculated parts of the plant including the axillary buds but not the roots or seeds. To verify whether transmission of the disease occurs via seeds, we harvested seeds from severely infected, field-grown basil plants. Harvests were done in four seasons, from several basil cultivars growing in three locations in Israel. Microscopic examinations revealed external contamination with sporangia of P. belbahrii of untreated seeds, but not of surface-sterilized seeds. Pathogen-specific PCR assays confirmed the occurrence of the pathogen in untreated seeds, but not in surface-sterilized seeds. Contaminated seeds were grown (without disinfection) in pasteurized soil in growth chambers until the four–six leaf stage. None of several thousand plants showed any symptom or sporulation of downy mildew. PCR assays conducted with several hundred plants grown from contaminated seeds proved no latent infection in plants developed from such seeds. The results confirmed that (i) P. belbahrii can spread systemically in basil plants, but does not reach their roots or seeds; (ii) sporangia of P. belbahrii may contaminate the surface, but not the internal parts, of seeds produced by infected basil plants in the field: and (iii) contaminated seeds produce healthy plants, which carry no latent infection. The data suggest that P. belbahrii in Israel is seed-borne, but not seed-transmitted.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 263-268 ◽  
Author(s):  
S. K. Gremillion ◽  
A. K. Culbreath ◽  
D. W. Gorbet ◽  
B. G. Mullinix ◽  
R. N. Pittman ◽  
...  

Field experiments were conducted in 2002 to 2006 to characterize yield potential and disease resistance in the Bolivian landrace peanut (Arachis hypogaea) cv. Bayo Grande, and breeding lines developed from crosses of Bayo Grande and U.S. cv. Florida MDR-98. Diseases of interest included early leaf spot, caused by the fungus Cercospora arachidicola, and late leaf spot, caused by the fungus Cercosporidium personatum. Bayo Grande, MDR-98, and three breeding lines, along with U.S. cvs. C-99R and Georgia Green, were included in split-plot field experiments in six locations across the United States and Bolivia. Whole-plot treatments consisted of two tebuconazole applications and a nontreated control. Genotypes were the subplot treatments. Area under the disease progress curve (AUDPC) for percent defoliation due to leaf spot was lower for Bayo Grande and all breeding lines than for Georgia Green at all U.S. locations across years. AUDPC for disease incidence from one U.S. location indicated similar results. Severity of leaf spot epidemics and relative effects of the genotypes were less consistent in the Bolivian experiments. In Bolivia, there were no indications of greater levels of disease resistance in any of the breeding lines than in Bayo Grande. In the United States, yields of Bayo Grande and the breeding lines were greater than those of the other genotypes in 1 of 2 years. In Bolivia, low disease intensity resulted in the highest yields in Georgia Green, while high disease intensity resulted in comparable yields among the breeding lines, MDR-98, and C-99R. Leaf spot suppression by tebuconazole was greater in Bolivia than in the United States. This result indicates a possible higher level of fungicide resistance in the U.S. population of leaf spot pathogens. Overall, data from this study suggest that Bayo Grande and the breeding lines may be desirable germplasm for U.S. and Bolivian breeding programs or production.


2009 ◽  
Vol 27 (1) ◽  
pp. 76-79 ◽  
Author(s):  
Sami J Michereff ◽  
Marissônia A Noronha ◽  
Gaus SA Lima ◽  
Ígor CL Albert ◽  
Edilaine A Melo ◽  
...  

The downy mildew, caused by Pseudoperonospora cubensis, is an important melon disease in Northeast Brazil. Considering the lack of standard methods for its assessment, a diagrammatic scale was developed with 2, 4, 8, 16, 32, 64, 82, and 96% of affected leaf area. The scale was then checked for its accuracy, precision, and reproducibility in estimating downy mildew severity. The diagrammatic scale was validated by eight disease raters; using 50 leaves with different severity levels, previously measured using the software Assess®. Two evaluations were performed on the same set of leaves, but in a different sequence order, by the same raters, within a 15-day interval. The accuracy and precision of each rater was determined by simple linear regression between the actual and the estimated severity. The scale provided good levels of accuracy (means of 87.5%) and excellent levels of precision (means of 94%), with absolute errors concentrated around 10%. Raters showed great repeatability (means of 94%) and reproducibility (>90% in 90.3% of cases) of estimates. Therefore, we could conclude that the diagrammatic scale presented here was suitable for evaluating downy mildew severity in melon.


2003 ◽  
Vol 28 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Álvaro M. R. Almeida ◽  
Lilian Amorim ◽  
Armando Bergamin Filho ◽  
Eleno Torres ◽  
José R. B. Farias ◽  
...  

The increase in incidence of charcoal rot caused by Macrophomina phaseolina on soybeans (Glycine max) was followed four seasons in conventional and no-till cropping systems. In the 1997/98 and 2000/01 seasons, total precipitation between sowing and harvest reached 876.3 and 846.9 mm, respectively. For these seasons, disease incidence did not differ significantly between the no-till and conventional systems. In 1998/99 and 1999/00 precipitation totaled 689.9 and 478.3 mm, respectively. In 1998/99, in the no-till system, the disease incidence was 43.7% and 53.1% in the conventional system. In 1999/00 the final incidence was 68.7% and 81.2% for the no-till and conventional systems, respectively. For these two seasons, precipitation was lower than that required for soybean crops (840 mm), and the averages of disease incidence were significantly higher in the conventional system. The concentration of microsclerotia in soil samples was higher in samples collected in conventional system at 0 - 10 cm depth. However, analysis of microsclerotia in roots showed that in years with adequate rain no difference was detected. In dry years, however, roots from plants developed under the conventional system had significantly more microsclerotia. Because of the wide host range of M. phaseolina and the long survival times of the microsclerotia, crop rotation would probably have little benefit in reducing charcoal rot. Under these study conditions it may be a better alternative to suppress charcoal rot by using the no-till cropping system to conserve soil moisture and reduce disease progress.


Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 549-554 ◽  
Author(s):  
L. V. Madden ◽  
M. A. Ellis ◽  
N. Lalancette ◽  
G. Hughes ◽  
L. L. Wilson

An electronic warning system for grape downy mildew— based on models for the infection of leaves of Vitis lambrusca, production of sporangia by Plasmopara viticola in lesions, and sporangial survival—was tested over 7 years in Ohio. Grapevines were sprayed with metalaxyl plus mancozeb (Ridomil MZ58) when the warning system indicated that environmental conditions were favorable for sporulation and subsequent infection. Over the 7 years, plots were sprayed from one to four times according to the warning system, and from four to 10 times according to the standard calendar-based schedule (depending on the date of the initiation of the experiment). The warning system resulted in yearly reductions of one to six sprays (with median of three sprays). Disease incidence (i.e., proportion of leaves with symptoms) in unsprayed plots at the end of the season ranged from 0 to 86%, with a median of 68%. Incidence generally was very similar for the warning-system and standard-schedule treatments (median of 7% of the leaves with symptoms), and both of these incidence values were significantly lower (P < 0.05) than that found for the unsprayed control, based on a generalized-linear-model analysis. Simplifications of the disease warning system, where sprays were applied based only on the infection or sporulation components of the system, were also effective in controlling the disease, although more fungicide applications sometimes were applied. Effective control of downy mildew, therefore, can be achieved with the use of the warning system with fewer sprays than a with a standard schedule.


2016 ◽  
Vol 96 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Yunfei* Jiang ◽  
Claude D. Caldwell

Camelina [Camelina sativa (L.) Crantz] has potential in aquaculture, livestock feed production, and the biofuel industry. It is necessary to determine the appropriate production technology for the newly introduced crop under different environmental conditions. The objective of this 2-year study was to measure the response of five camelina genotypes in terms of seed yield, yield components, and disease incidence to applied nitrogen (N) at multiple sites in the Maritime provinces of eastern Canada. The factorial experiment was set up as a randomized complete block design. The two factors were six N rates (0, 25, 50, 100, 150, and 200 kg ha−1 N) and five genotypes of camelina (Calena, CDI002, CDI005, CDI007, and CDI008). The interactive effect of N rates and genotypes was considered. Results showed that camelina, which is usually considered a low-input crop, responded positively to increased applied N at rates up to 200 kg ha−1 N. Seed yield responded differently to applied N rates depending on genotype. Branch and pod development were decisive for seed yield. The advanced line CDI007 had the highest yield potential among the five genotypes. Downy mildew infection was positively correlated with applied N rates; however, seed yield was not significantly affected by downy mildew infection.


Sign in / Sign up

Export Citation Format

Share Document