scholarly journals Evaluation of a Disease Warning System for Downy Mildew of Grapes

Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 549-554 ◽  
Author(s):  
L. V. Madden ◽  
M. A. Ellis ◽  
N. Lalancette ◽  
G. Hughes ◽  
L. L. Wilson

An electronic warning system for grape downy mildew— based on models for the infection of leaves of Vitis lambrusca, production of sporangia by Plasmopara viticola in lesions, and sporangial survival—was tested over 7 years in Ohio. Grapevines were sprayed with metalaxyl plus mancozeb (Ridomil MZ58) when the warning system indicated that environmental conditions were favorable for sporulation and subsequent infection. Over the 7 years, plots were sprayed from one to four times according to the warning system, and from four to 10 times according to the standard calendar-based schedule (depending on the date of the initiation of the experiment). The warning system resulted in yearly reductions of one to six sprays (with median of three sprays). Disease incidence (i.e., proportion of leaves with symptoms) in unsprayed plots at the end of the season ranged from 0 to 86%, with a median of 68%. Incidence generally was very similar for the warning-system and standard-schedule treatments (median of 7% of the leaves with symptoms), and both of these incidence values were significantly lower (P < 0.05) than that found for the unsprayed control, based on a generalized-linear-model analysis. Simplifications of the disease warning system, where sprays were applied based only on the infection or sporulation components of the system, were also effective in controlling the disease, although more fungicide applications sometimes were applied. Effective control of downy mildew, therefore, can be achieved with the use of the warning system with fewer sprays than a with a standard schedule.

2002 ◽  
Vol 92 (6) ◽  
pp. 631-636 ◽  
Author(s):  
B. M. Wu ◽  
A. H. C. van Bruggen ◽  
K. V. Subbarao ◽  
H. Scherm

The effect of temperature on infection of lettuce by Bremia lactucae was investigated in controlled environment studies and in the field. In controlled conditions, lettuce seedlings inoculated with B. lactucae were incubated at 15, 20, 25, or 30°C during a 4-h wet period immediately after inoculation or at the same temperatures during an 8-h dry period after the 4-h postinoculation wet period at 15°C. High temperatures during wet and dry periods reduced subsequent disease incidence. Historical data from field studies in 1991 and 1992, in which days with or without infection had been identified, were analyzed by comparing average air temperatures during 0600 to 1000 and 1000 to 1400 Pacific standard time (PST) between the two groups of days. Days without infection had significantly higher temperatures (mean 21.4°C) than days with infection (20.3°C) during 1000 to 1400 PST (P < 0.01) but not during 0600 to 1000 PST. Therefore, temperature thresholds of 20 and 22°C for the 3-h wet period after sunrise and the subsequent 4-h postpenetration period, respectively, were added to a previously developed disease warning system that predicts infection when morning leaf wetness lasts ≥4 h from 0600 PST. No infection was assumed to occur if average temperature during these periods exceeded the thresholds. Based on nonlinear regression and receiver operating characteristic curve analysis, the leaf wetness threshold of the previous warning system was also modified to ≥3-h leaf wetness (≥0900 PST). Furthermore, by comparing solar radiation on days with infection and without infection, we determined that high solar radiation during 0500 to 0600 PST in conjunction with leaf wetness ending between 0900 and 1000 PST was associated with downy mildew infection. Therefore, instead of starting at 0600 PST, the calculation of the 3-h morning leaf wetness period was modified to start after sunrise, defined as the hour when measured solar radiation exceeded 8 W m-2 (or 41 μmol m-2 s-1 for photon flux density). The modified warning system was compared with the previously developed system using historical weather and downy mildew data collected in coastal California. The modified system was more conservative when disease potential was high and recommended fewer fungicide applications when conditions were not conducive to downy mildew development.


2014 ◽  
Vol 104 (7) ◽  
pp. 692-701 ◽  
Author(s):  
Mélanie Rouxel ◽  
Pere Mestre ◽  
Anton Baudoin ◽  
Odile Carisse ◽  
Laurent Delière ◽  
...  

The putative center of origin of Plasmopara viticola, the causal agent of grape downy mildew, is eastern North America, where it has been described on several members of the family Vitaceae (e.g., Vitis spp., Parthenocissus spp., and Ampelopsis spp.). We have completed the first large-scale sampling of P. viticola isolates across a range of wild and cultivated host species distributed throughout the above region. Sequencing results of four partial genes indicated the presence of a new P. viticola species on Vitis vulpina in Virginia, adding to the four cryptic species of P. viticola recently recorded. The phylogenetic analysis also indicated that the P. viticola species found on Parthenocissus quinquefolia in North America is identical to Plasmopara muralis in Europe. The geographic distribution and host range of five pathogen species was determined through analysis of the internal transcribed spacer polymorphism of 896 isolates of P. viticola. Among three P. viticola species found on cultivated grape, one was restricted to Vitis interspecific hybrids within the northern part of eastern North America. A second species was recovered from V. vinifera and V. labrusca, and was distributed across most of the sampled region. A third species, although less abundant, was distributed across a larger geographical range, including the southern part of eastern North America. P. viticola clade aestivalis predominated (83% of isolates) in vineyards of the European winegrape V. vinifera within the sampled area, indicating that a single pathogen species may represent the primary threat to the European host species within eastern North America.


2018 ◽  
Vol 19 (2) ◽  
pp. 139-139 ◽  
Author(s):  
Xuewen Feng ◽  
Anton Baudoin

This report documents the first known occurrence in North America of resistance in grape downy mildew (Plasmopara viticola) to the carboxylic acid amide (CAA) fungicides mandipropamid and dimethomorph. These fungicides (FRAC group 40) have been an important component of downy mildew management programs for the past decade. Resistant isolates were obtained at three locations in Virginia and one in North Carolina, at considerable distances from each other. Resistance was documented by bioassay and the presence of the G1105S mutation, which has been associated with CAA resistance of P. viticola in other areas. Further survey is needed to determine the geographic extent of this resistance.


2007 ◽  
Vol 58 (7) ◽  
pp. 702 ◽  
Author(s):  
M. G. Williams ◽  
P. A. Magarey ◽  
K. Sivasithamparam

Plasmopara viticola, causal agent of grape downy mildew, was first detected in Western Australia (WA) in widespread commercial viticulture in the Swan Valley (–31.85 S, 116.02 E) in 1998. It has since been found in all viticultural areas in WA, which extend from the far north (–15.75 S, 128.74 E) to the far south (–35.02 S, 117.80 E) of the state across a diverse range of climate zones. Not all of these zones are considered conducive for the development of grape downy mildew. The early infection behaviour of P. viticola isolates, obtained from climatically different grape-growing locations, was examined under different temperatures of incubation (10, 20, and 30°C). Variation in early infection behaviour was used to discern ecotypes of the pathogen. Ten isolates were obtained from WA and 8 of these responded similarly. Three isolates obtained from the east of Australia and used as comparisons in the study behaved similarly to most of the WA isolates. Zoospore germination and host penetration occurred at 10 and 20°C for all isolates. None of the isolates penetrated the host at 30°C. Only 2 isolates, from WA, germinated at 30°C. The early infection behaviour of most of the P. viticola isolates examined in this study appears to be reasonably analogous, despite the influence of varied local environmental conditions. The capacity of certain isolates to germinate under a wider spectrum of temperatures could be indicative of ecotypic specialisation. Such behaviour could confer advantage for the pathogen in viticultural regions that experience high temperatures throughout the growing season.


2008 ◽  
Vol 65 (spe) ◽  
pp. 60-64 ◽  
Author(s):  
Emília Hamada ◽  
Raquel Ghini ◽  
Paulo Rossi ◽  
Mário José Pedro Júnior ◽  
Jeferson Lobato Fernandes

Viticulture in Brazil has been growing in importance in recent years. In the State of São Paulo, a significant percentage of the production is basically destined to in natura consumption and, more recently, much effort has been made by institutions to revitalize the viticulture in the State. Among fungal diseases, the downy mildew (Plasmopara viticola) is one of the main diseases affecting this crop in Brazil, with extreme damage effects on its production. The objective of this study was to estimate the incidence of the downy mildew on grape under the climatic conditions of the State of São Paulo, based on a mathematical model and using Geographical Information System - GIS tools. The study considered the months from September to April, a period in which the downy mildew can affect grapevines under development. Mean temperature and relative humidity were the basic weather data entered in the GIS database. Leaf wetness duration was estimated from relative humidity measurements. Climatic data entered in the GIS were used to calculate and produce maps depicting the severity of the grape downy mildew, through the application of a disease model. Three cities were evaluated (Jales, Jundiaí, and São Miguel Arcanjo), since they represent the main vineyard centers in the State. The adopted methodology permitted quantifying the severity of the grape downy mildew not only in spatial terms, identifying the variability among the different regions of the State, but also in temporal terms, along the months, making an adequate distinction of the studied cities.


Plant Disease ◽  
2021 ◽  
Author(s):  
Sujata Singh Yadav ◽  
Priyanka Suryavanshi ◽  
Indrajeet Nishad ◽  
Soumya Sinha

Sweet basil (Ocimum basilicum L.; Family Lamiaceae) is an annual aromatic and medicinal plant grown in tropical and subtropical regions of the world. In India, it is cultivated as a commercial crop on ~8,000 ha. Aerial plant parts and essential oil of sweet basil are used in pharmaceutical, perfumery, food industries and in different formulations of traditional Ayurvedic and Unani medicines (Shahrajabian et al. 2020). The leaves have the highest concentrations of secondary metabolites such as terpenes and phenylpropanoids which provide the distinctive aroma (Viuda-Martos et al. 2011). During October 2020, severe foliar disease was observed in experimental fields of sweet basil at Council of Scientific and Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants (CIMAP) in Lucknow, India. Initial symptoms included large, interveinal chlorotic lesions on the adaxial surface of the leaves and black sporulation on the abaxial surface. Within a few days, the abaxial side of leaves turned necrotic, and leaf senescence and defoliation occurred on plants with severe symptoms. Disease incidence was 20 to 30% of plants. The pathogen was characterized morphologically using a light microscope. Sporangiophores were hyaline, dichotomously branched, 186.9 to 423.07 × 6.85 to 9.06 µm and, branched 3 to 5 times with each branch, terminating in two slightly curved branchlets, the longer one 7.05 to 25.31 µm and the shorter one 4.98 to 15.92 µm. Each branchlet had a single sporangium at the tip. Conidia were ellipsoidal to sub-globose, olive-brown in color, and typically measured 25.21 to 33.86 × 17.92 to 26.24 µm, each, without a pedicel. Based on these morphological characteristics, the foliar disease was identified as downy mildew was caused by Peronospora belbahrii (Thines et al. 2009). Eight symptomatic and two asymptomatic plant samples were collected from different locations in the field, and genomic DNA was extracted from the conidia of the eight naturally infected tissues of sweet basil samples as well as leaf tissues from two asymptomatic plants, using the CTAB method. The internal transcribed spacer region was amplified using ITS1 and ITS4 primers. Only eight infected samples amplified products of expected size (~ 700 bp) and two asymptomatic samples showed no amplification. Only five amplified PCR products were sequenced (White et al. 1990). All five sequences were identical and were a 98.1% match with five P. belbahrii isolates (MN450330.1, MN308051.1, MH620351.1, KJ960193, and MF693898). The consensus sequence was deposited into the NCBI database (GenBank Accession No. MW689257). Downy mildew caused by P. belbahrii previously has been reported on sweet basil from several countries (Wyenandt et al. 2015). To confirm the pathogenicity of these isolates on sweet basil (cv. CIM-Saumya), 25 - day-old sweet basil plants were sprayed with a suspension (1 × 105 sporangia/ml) of P. belbahrii. All plants were kept in a growth chamber with a 23/18°C diurnal cycle with 65 to 85% relative humidity for 24 h. Non-inoculated plants treated with sterile water served as a control treatment. After 8 days, typical symptoms of downy mildew appeared on all the inoculated plants while non-inoculated plants remained asymptomatic. Inoculated leaves with symptoms consistent of downy mildew were collected and the causal agent again identified as P. belbahrii on the basis of microscopic examination and ITS rDNA sequence data. To our knowledge, this is the first report of downy mildew caused by P. belbahrii on sweet basil in India. The pathogen has a broad host range and may pose a serious threat to the cultivation of this valuable crop in India. Thus, it is pertinent to develop effective control measures to avoid further spread and mitigate economic loss. References: Shahrajabian, M. H., et al. 2020. Int. J. Food Prop. 23:1961-1970. Wyenandt, C. A., et al. 2015. Phytopathology 105:885. Thines, M., et al. 2009. Mycol. Res. 113:532. White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Viuda-Martos, M., et al. 2011. Food Control. 22:1715.


2019 ◽  
Vol 12 (4) ◽  
pp. 522-526 ◽  
Author(s):  
Gabriela Ortega-Munoz ◽  
Nivia Luzuriaga-Neira ◽  
Richard Salazar-Silva ◽  
Richar Rodriguez-Hidalgo

Aim: This study aimed to determine the prevalence of Oestrus ovis in sheep meant for meat commercialization in the main slaughterhouse of the country. Materials and Methods: Between October 2015 and December 2015, we assessed the occurrence of Oestrus myiasis in the main slaughterhouse localized in Quito. In total, 80 sheep heads were randomly inspected and necropsied. Larvae were removed from nasal cavities and paranasal sinuses and cleaned. ANOVA (generalized linear model) was used to estimate the relationship between sex, age, and place of origin and presence or absence of parasite larvae. Results: Morphological identification confirmed that 19% (15/80) of the examined animals were positive for Oestrus ovis; from the positive cases, 21% were young animals <12 months old. We found that statistical differences by animal sex, males, were most infested 93% (14/15) than females 7% (1/15). Larvae's L2 were more abundant than other stages (62 of the total 149). 14 of the infested animals were from the Andean places at > 2500 meters above sea level (m.a.s.l.), and only one case from the coastal region at 250 m.a.s.l. with tropical environmental conditions. Conclusion: Our results showed evidence of the presence of myiasis caused by O. ovis in Andean and coastal places in Ecuador and its adaptation to different environmental conditions from that reported previously in temperate regions from Europe and Africa.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 605d-605
Author(s):  
Joseph A. Fiola ◽  
Gary C. Pavlis

Downy Mildew, Plasmopara viticola, causes major damage and economic loss to many wine grape cultivars grown in the Northeast. The purpose of the experiment was to test the efficacy of Vossen Blue (VB; iron pigment) in association with fungicides for the control of Downy Mildew disease of wine grapes in New Jersey. The experimental plot was a planting of `Seyval Blanc' (5th leaf). Treatments (applied via back-pack sprayer) included no fungicide (control I), full fungicide (FF) (RCE commercial recs; control II), FF + 4%VB, FF + 8%VB, 8%VB, Half Rate Fungicide (HF) + 4%VB, HF + 8%VB. There were no significant differences between treatments for total yield, average cluster weight, average berry weight, Brix %, and pH. Spectrophotometric (Hunter's Lab) analysis of foliage samples revealed that leaf samples from the VB treatments had greater green color (correlate: increased chlorophyll). Analysis of subjective (1-9) disease incidence data: FF8 significantly lower disease score that FF; FF4, HF4, HF8, and FF no difference. Compared to normal full fungicide: superior Downy Mildew control was achieved by adding VB to full fungicide; equal control was achieved with half fungicide and VB.


Sign in / Sign up

Export Citation Format

Share Document