scholarly journals Effects of Broccoli Rotation on Lettuce Drop Caused by Sclerotinia minor and on the Population Density of Sclerotia in Soil

Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Jianjun Hao ◽  
Krishna V. Subbarao ◽  
Steven T. Koike

Field experiments were conducted at Spence Road site and at the Hartnell College East Campus site in Salinas, CA, to determine the effects of crop rotation with broccoli or a fallow period on lettuce drop caused by Sclerotinia minor and the density of pathogen sclerotia in the soil. Treatments at the Spence Road site with low inoculum density (<7 sclerotia per 100 cm3 of soil) distributed randomly included: successive crops of lettuce (LLL), lettuce rotated with broccoli (LBL), and lettuce followed by a fallow period (LFL). Treatments at the Hartnell site with high inoculum density (>7 sclerotia per 100 cm3 of soil) distributed uniformly included: continuous lettuce (LLLL), broccoli-lettuce-broccoli-lettuce (BLBL), broccoli-broccoli-lettuce-lettuce (BBLL), and fallow-lettuce-fallow-lettuce (FLFL). At the Spence Road site, continuous lettuce did not increase lettuce drop incidence for at least 2 years, although an increase in soilborne sclerotia was observed annually but was below the threshold at which a correlation between inoculum density and disease incidence is observed. Rotation with broccoli resulted in small reductions in disease incidence only in the first year. The density of sclerotia was lowest in the LFL treatment, and the highest in the LLL. At the Hartnell site, rotation with broccoli significantly reduced both sclerotia and lettuce drop incidence. The number of broccoli crops rather than the sequence of lettuce rotations with broccoli was critical for reducing the numbers of S. minor sclerotia in soil. Fallowing after a lettuce crop resulted in marginal reductions in sclerotia and lettuce drop incidence. Viability of recovered sclerotia was not significantly different between treatments, although differences between seasons were detected. Results suggest that rotations with broccoli can be a practical lettuce drop management strategy.

Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 269-278 ◽  
Author(s):  
J. J. Hao ◽  
K. V. Subbarao

Field experiments were conducted to determine the population dynamics of Sclerotinia minor and incidence of lettuce drop at two sites during 1995 to 1998. Rotation treatments at the Spence site, which had a low density of inoculum (<7 sclerotia per 100 cm3 of soil) that was distributed randomly, included: continuous lettuce (LLL), lettuce rotated with broccoli (LBL), and lettuce followed by a fallow period (LFL). Treatments at the Hartnell site, which had a high density of inoculum (>7 sclerotia per 100 cm3 of soil) that was distributed uniformly, included: continuous lettuce (LLLL), alternate crops of broccoli and lettuce (BLBL), continuous broccoli or lettuce (BBLL), and fallow-lettuce-fallow-lettuce (FLFL). Under continuous lettuce cropping (LLLL) at the Hartnell site, a progressively aggregated spatial pattern of inoculum distribution developed, despite the initial uniform distribution of high inoculum density. In the fallow treatment (FLFL), the spatial pattern tended to be aggregated following a lettuce crop and less aggregated or random when left fallow. In contrast to these two treatments, treatments involving rotations with broccoli (BLBL and BBLL) exhibited consistently random spatial patterns of inoculum regardless of the crop in the field. The marginal increases in the number of sclerotia contributed by the few diseased lettuce plants were offset by the significant reductions in the number of sclerotia by the broccoli residue. Spatial patterns of disease incidence reflected the pattern of inoculum distribution in the soil at the Hartnell site. Higher inoculum density coupled with an aggregated distribution was associated with an aggregation in disease incidence. At Spence, this correlation was poor in most seasons because of progressive decline in the lettuce drop incidence and lack of treatment differences. In greenhouse experiments, the competence volume for S. minor sclerotia was quantified, which was calculated to be 25 3 for 100% infection and 200 cm3 for 50% infection. Thus, in 100 cm3 of soil, a minimum of four to five sclerotia are needed for 100% of infection, explaining the high correlation between inoculum density and disease incidence.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1118-1124 ◽  
Author(s):  
P. Chitrampalam ◽  
T. A. Turini ◽  
M. E. Matheron ◽  
B. M. Pryor

Field experiments were conducted over 2 years in Yuma, AZ, and Holtville, CA, to establish the relationship between soil sclerotium density of Sclerotinia sclerotiorum and the incidence of lettuce drop on different lettuce (Lactuca sativa) types under different irrigation systems, and to determine the efficacy of the biocontrol agent Coniothyrium minitans (Contans) against S. sclerotiorum on crisphead lettuce at varied sclerotium densities under different irrigation systems. There was no significant interaction of irrigation (overhead sprinkler versus furrow) with either sclerotium density or with biocontrol treatment. Lettuce drop incidence was lowest in romaine lettuce compared with crisphead or leaf lettuce at all soil sclerotium densities. There was a significant positive correlation between the sclerotial density and the percent disease incidence. Disease incidence in plots infested with 2 sclerotia/m2 of bed was not significantly higher than in control plots regardless of lettuce type. However, plots infested with 40 or 100 sclerotia/m2 of bed revealed a significantly higher disease incidence over the control in all lettuce types. A single application of Contans at planting significantly reduced the incidence of lettuce drop in all lettuce types even under high disease pressure. There were no significant differences between recommended (2.2 kg/ha) and high (4.4 kg/ha) application rates of Contans or between one or two applications of the product.


2015 ◽  
Vol 29 (4) ◽  
pp. 868-873 ◽  
Author(s):  
Kris J. Mahoney ◽  
Kristen E. McNaughton ◽  
Peter H. Sikkema

Four field experiments were conducted over a 2-yr period (2012 and 2013) in winter wheat to evaluate POST herbicides for the control of glyphosate-resistant (GR) giant ragweed. POST herbicides were evaluated for winter wheat injury and GR giant ragweed control, population density, and aboveground biomass. The herbicides used in this study provided 54 to 90% and 51 to 97% control of GR giant ragweed at 4 and 8 wk after treatment (WAT), respectively. At 8 WAT, auxinic herbicide treatments or herbicide tank mix/premix treatments that contained auxinics provided 78 to 97% control of GR giant ragweed. Reductions in GR giant ragweed population density and aboveground biomass were 62 to 100% and 83 to 100%, respectively, and generally reflected the level of control. The results of this research indicate that Ontario, Canada, corn and soybean growers should continue to incorporate winter wheat into their crop rotation as one component of an integrated weed management (IWM) strategy for the control of GR giant ragweed.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1250-1250 ◽  
Author(s):  
S. T. Koike

Mexican sunflower (Tithonia rotundifolia) is a plant in the Asteraceae that is grown commercially as a cutflower commodity and also as a beneficial insectary plant. In June 2012 in coastal California (Santa Cruz County), several fields of organic lettuce (Lactuca sativa) were interplanted with direct-seeded rows of Mexican sunflower (cv. Torch) in order to attract beneficial insects. When approximately 2 to 3 weeks from harvest, lettuce plants began to wilt and collapse. Lettuce crowns were decayed and covered with white mycelium and small (0.5 to 3 mm diameter), irregularly shaped, black sclerotia. These plants were confirmed to have lettuce drop disease caused by Sclerotinia minor (2). In addition, Mexican sunflower plants began to wilt and eventually died. Initial symptoms on crowns and bases of the main stems in contact with soil consisted of a light tan discoloration. These discolored areas turned darker brown, became necrotic, and later were covered with white mycelium and sclerotia that were identical to those found on lettuce. Symptomatic sunflower stems were surface disinfested and small pieces from the margins of necrotic areas were placed into petri plates containing acidified potato dextrose agar. Resulting fungal colonies were white, produced profuse numbers (approx. 39 sclerotia/cm2) of small black sclerotia, and were identified as S. minor. Six-week-old Mexican sunflower plants grown in a peat moss-based rooting medium in 5-cm square pots were used to test the pathogenicity of four isolates. Isolates were grown on cubed and autoclaved potato pieces and resulting sclerotia were recovered and dried (1). For each isolate, 12 plants for each of three cultivars (cvs. Fiesta del Sol, Torch, and Yellow Torch) were inoculated by placing 3 to 5 sclerotia 1 cm below the soil level and adjacent to the plant crowns/stem bases. Sterile sand was placed next to crowns of the control plants. Plants were maintained in a greenhouse at 22 to 24°C. Symptom development was rapid and after 6 to 7 days, inoculated Tithonia plants exhibited brown necrosis at inoculated areas. After 10 days, Tithonia crowns were decayed and plants wilted. S. minor was reisolated from selected necrotic crown and stem tissues. Diseased plants that were not used for reisolations later supported the growth of the characteristic white mycelium and black sclerotia. There were no significant differences between the Tithonia cultivars, and overall disease incidence ranged from 74 to 100%. Non-inoculated plants were asymptomatic. The experiment was repeated and results were similar. In addition, the sclerotia of the four Tithonia isolates were similarly inoculated onto sets of 12 romaine lettuce plants (cv. Green Towers). After 5 to 6 days, all plants developed lettuce drop disease and the pathogen was reisolated. To my knowledge, this is the first report of Mexican sunflower as a host of S. minor. These findings indicate that Mexican sunflower and lettuce are susceptible to the same lettuce drop pathogen, and that this beneficial insectary plant could increase soilborne inoculum of S. minor. Growers should therefore be aware of the host status of beneficial insectary and other plants interplanted with crops. References: (1) P. Chitrampalam et al. Phytopathology 101:358, 2011. (2) K. V. Subbarao. Plant Dis. 82:1068, 1998.


2016 ◽  
Vol 30 (1) ◽  
pp. 181-189 ◽  
Author(s):  
Nathan R. Johanning ◽  
S. Alan Walters ◽  
Bryan G. Young

Volunteer horseradish plants that emerged from root segments remaining after harvest can reduce yields of rotational crops as well as provide a host for pathogens and insects, thus reducing the benefits of crop rotation. POST applications of halosulfuron in corn can be an effective component to improve management of volunteer horseradish, but the replant interval from application to safe planting of commercial horseradish has not been determined. Fall herbicide applications are another possible volunteer horseradish management strategy than can be implemented once crops are harvested. Therefore, field experiments were conducted to evaluate the safe replant interval of horseradish following halosulfuron applications and to determine the efficacy of fall herbicide applications for volunteer horseradish control. Visual estimates of horseradish injury were greatest (85%) in plantings made zero months after halosulfuron applied at two times the approved rate; moreover, for all rates, injury decreased as the time after halosulfuron application increased. No herbicide injury or root biomass reduction occurred on horseradish at any halosulfuron rate from replanting beyond 4 mo after halosulfuron application. Control of volunteer horseradish was 91% or greater for all fall herbicide applications that included 2,4-D. Furthermore, volunteer horseradish shoot density was the lowest following combinations of 2,4-D tank-mixed with halosulfuron or rimsulfuron : thifensulfuron (0.2 and 0.4 shoots m−2, respectively) compared with the nontreated control (5.1 shoots m−2). This research demonstrates the effectiveness of both halosulfuron and 2,4-D as components of an integrated management strategy for volunteer horseradish control and the potential for halosulfuron applications without soil persistence beyond 4 mo affecting subsequent commercial horseradish production.


Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1625-1634 ◽  
Author(s):  
P. Chitrampalam ◽  
P. J. Figuli ◽  
M. E. Matheron ◽  
K. V. Subbarao ◽  
B. M. Pryor

Field experiments were conducted over 2 years in Yuma County, AZ, and Imperial County, CA, to determine the efficacy of several biocontrol agents for the management of lettuce drop caused by Sclerotinia spp. Commercial formulations of Trichoderma harzianum (Plantshield, Supersivit), Gliocladium virens (Soilgard), Coniothyrium minitans (Contans), and Bacillus subtilis (Companion) were evaluated and compared with the chemical fungicide iprodione (Rovral) against Sclerotinia sclerotiorum and S. minor. A single application of biocontrol products or of Rovral did not reduce lettuce drop caused by either Sclerotinia species. However, two applications of Contans, one at planting and one at post-thinning, significantly reduced the incidence of lettuce drop caused by S. sclerotiorum and increased yield but had no effect on S. minor at both locations in both years. Two applications of other biocontrol products did not significantly reduce disease incidence despite medium to high recovery following application. In contrast, Contans was only sporadically recovered following application. In vitro fungicide sensitivity evaluation revealed that both Trichoderma and Gliocladium species were tolerant to iprodione, dicloran (Botran), and vinclozolin (Ronilan) up to 1,000 ppm a.i., whereas both Sclerotinia spp. and C. minitans were sensitive to all three fungicides above 1 ppm. In summary, Contans was the most effective treatment for the control of lettuce drop caused by S. sclerotiorum, but no treatment was effective against S. minor in the desert lettuce production systems.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 881B-881 ◽  
Author(s):  
R. Grube* ◽  
R. Aburomia

A low to moderate incidence of lettuce drop caused by Sclerotinia minor is commonly observed in commercial lettuce fields of all types of lettuce (e.g. crisphead, romaine, leaf, butter) and although partial resistance has been reported, no sources of immunity have been described. We sought to determine whether there was variability between different types of lettuce and among cultivars within types. Replicated experiments were conducted in an infested field using established inoculation procedures. Significant variation in susceptibility to S. minor was detected among cultivars within as well as between major lettuce types. Correlations between lettuce drop susceptibility and plant canopy size, seedling vigor, and additional morphological traits were determined. Variability between different field experiments was also evaluated for several traits and a subset of cultivars. Our results suggest that cultivated germplasm may provide genes that are as useful or more useful than those found in genotypes with more primitive growth habits in developing cultivars with tolerance to lettuce drop.


Plant Disease ◽  
2001 ◽  
Vol 85 (6) ◽  
pp. 661-667 ◽  
Author(s):  
Lisa M. Ferguson ◽  
B. B. Shew

Experiments were conducted in 1992, 1993, and 1994 to determine the effects of surface residue on incidence of Cylindrocladium black rot (CBR), Sclerotinia blight, and Southern stem rot of peanut in microplots in North Carolina. Soil was infested with either Cylindrocladium parasiticum, Sclerotium rolfsii, or Sclerotinia minor and plots were planted with the peanut cultivars NC 7 or NC 10C. Wheat straw was applied to establish 80 to 90% soil-surface coverage. Disease incidence data were collected every 2 weeks in 1992 and weekly in 1993 and 1994. Southern stem rot incidence did not increase with straw amendment but final inoculum density of Sclerotium rolfsii was highest in straw-amended plots. Straw amendment enhanced CBR incidence in 1992, but had minimal effects in 1993 and 1994. Neither root rot severity nor inoculum density of C. parasiticum was affected by straw treatment. Straw application reduced Sclerotinia blight in 1992 and 1993 but not in 1994 compared with unamended plots. Initial inoculum density had the greatest impact on final Sclerotinia minor populations. Soil temperature and moisture were monitored in 1993 and 1994. Soil at 0 to 2 cm of depth in strawamended microplots was 1 to 2°C cooler than in unamended plots.


Plant Disease ◽  
2005 ◽  
Vol 89 (7) ◽  
pp. 717-725 ◽  
Author(s):  
J. J. Hao ◽  
K. V. Subbarao

Temporal and spatial patterns of lettuce (Lactuca sativa) drop caused by Sclerotinia minor and S. sclerotiorum were determined in lettuce fields in the Salinas, Santa Maria, and San Joaquin Valleys in California during 1995 to 1998. Of the 25 commercial fields assessed, 14 had predominantly S. minor, 9 had predominantly S. sclerotiorum, and 2 had varying levels of both species. Sclerotinia infections were classified based on symptoms: those caused directly by eruptive germination of sclerotia (type I) and those caused by the airborne ascospores (type II). The precise location of diseased and healthy plants was mapped and lettuce drop progress was determined at different crop growth stages. Spatial patterns of disease incidence were analyzed using 1-by-1-, 2-by-2-, 3-by-3-, and 4-by-4-m quadrat sizes. Regardless of the analytical method employed, disease incidence with type I infection showed an aggregated pattern in a majority of the fields evaluated and random patterns in fields where incidence was low. In all fields with type I infection, disease progress followed the monomolecular model, typical of soilborne diseases. For fields with aggregated distribution, spatial dependence was observed up to 10 m and was either isotropic or random in direction, suggesting the potential influence of tillage operations on inoculum distribution and disease incidence. Lettuce drop incidence in fields with type II infection was erratic in time and peaked within a very short time. However, disease incidence showed an aggregated pattern in all fields evaluated. Spatial dependence of quadrats generally was detected in two adjacent directions, suggesting a directional gradient perhaps caused by wind direction during ascospore dissemination. Increasing quadrat sizes usually increased the degree of aggregation of lettuce drop, but not the distribution pattern itself. These results demonstrate that the source of inoculum and the type of infections they cause are most likely to determine spatial patterns of lettuce drop in the field.


Author(s):  
А. М. Grebennikov ◽  
А. S. Frid ◽  
V. P. Belobrov ◽  
V. А. Isaev ◽  
V. М. Garmashоv ◽  
...  

The article assesses the relationships between the morphological properties of agrochernozems and yield of peas on the plots, experience with different methods of basic treatment (moldboard plowing at the depth of 20 - 22, 25 - 27 and 14 - 16 cm, moldboard plowing to a depth of 14 - 16 cm, combined midwater moldboard, mid-water subsurface, surface to a depth of 6 - 8 cm and zero tillage) is inherent in V.V. Dokuchaev Research Institute of Agriculture of the Central Black Earth strip, in the fall of 2014. The research was conducted in 2015 - 2016, with the application of mineral fertilizers (N60Р60К60) and unfertilized background. The highest pea yields in the fertilized as the background, and without the use of fertilizers was observed in dumping plowing and especially in the variant with deep moldboard plowing, which creates in comparison with other ways of handling the best conditions for the growth and development of peas. The lowest yield of pea was obtained with zero processing. Apparently legalistic migrational-mizelial agrochernozems the Central Chernozem zone of minimum tillage in the cultivation of peas are not effective, what is evident already in the first year after the laying of experience with different basic treatments. As shown by the results of applying multifactor analysis of variance studied the mapping properties of the soil can have the same significant impact on the yield of agricultural crops, as options for the field experiments aimed at assessing the impact of various treatments on yield.


Sign in / Sign up

Export Citation Format

Share Document