Differentiating Phytophthora ramorum and P. kernoviae from Other Species Isolated from Foliage of Rhododendrons

2010 ◽  
Vol 11 (1) ◽  
pp. 22 ◽  
Author(s):  
T. L. Widmer

Phytophthora species are among plant pathogens that are the most threatening to agriculture. After the discovery of P. ramorum, surveys have identified new species and new reports on rhododendrons. Based upon propagule production, morphology, and colony growth, a dichotomous key was produced that can differentiate P. ramorum and P. kernoviae from other species known to be pathogenic to aerial plant parts of rhododendrons. These distinctions were made without molecular tools and wide-ranging variables such as propagule sizes and can be made without the need for a large culture collection. Accepted for publication 17 December 2009. Published 17 March 2010.

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 682
Author(s):  
Carlo Bregant ◽  
Antonio A. Mulas ◽  
Giovanni Rossetto ◽  
Antonio Deidda ◽  
Lucia Maddau ◽  
...  

Monitoring surveys of Phytophthora related diseases in four forest nurseries in Italy revealed the occurrence of fourteen Phytophthora species to be associated with collar and root rot on fourteen plants typical of Mediterranean and alpine regions. In addition, a multilocus phylogeny analysis based on nuclear ITS and ß-tubulin and mitochondrial cox1 sequences, as well as micromorphological features, supported the description of a new species belonging to the phylogenetic clade 7c, Phytophthora mediterranea sp. nov. Phytophthora mediterranea was shown to be associated with collar and root rot symptoms on myrtle seedlings. Phylogenetically, P. mediterranea is closely related to P. cinnamomi but the two species differ in 87 nucleotides in the three studied DNA regions. Morphologically P. mediterranea can be easily distinguished from P. cinnamomi on the basis of its smaller sporangia, colony growth pattern and higher optimum and maximum temperature values. Data from the pathogenicity test showed that P. mediterranea has the potential to threaten the native Mediterranean maquis vegetation. Finally, the discovery of P. cinnamomi in alpine nurseries, confirms the progressive expansion of this species towards cold environments, probably driven by climate change.


Plant Disease ◽  
2011 ◽  
Vol 95 (6) ◽  
pp. 777-777
Author(s):  
P. Tsopelas ◽  
E. J. Paplomatas ◽  
S. E. Tjamos ◽  
K. Elena

Species of Rhododendron and resulting hybrids are very important hosts of the quarantine pathogen Phytophthora ramorum, since they play a major role in the spread of the pathogen in Europe. However, many other Phytophthora species infect these hosts, causing similar symptoms. Widmer (4) listed 17 Phytophthora species as foliar pathogens of rhododendron in the United States. A survey was conducted in Greece in October 2009, in which potted plants of Rhododendron spp. were inspected for symptoms of necrotic lesions on leaves and buds caused by P. ramorum. Symptomatic plants were observed in one of the nurseries inspected in the Triphylia Region in southwestern Peloponnese. Isolations from symptomatic leaves on PARBhy-V8 selective agar medium (1) yielded Phytophthora isolates. Colonies on V8 juice agar appeared white and cottony, with a radial growth of 4.2 to 4.6 mm per day at 28°C with a maximum growth temperature of 36°C. Sporangia were produced abundantly on the medium surface and in water; the sporangia were broadly ovoid and papillate and 35 to 50 × 25 to 35 μm. Chlamydospores, 25 to 40 μm in diameter, were observed in 2-week-old cultures, while no sexual structures were observed. Three of the isolates examined were identified as P. nicotianae B. de Haan on the basis of morphological and physiological features (3,4). Genomic DNA was extracted from pure cultures of an isolate and the internal transcribed spacer (ITS) region was amplified using the ITS4/5 primer pair. Sequence analyses by BLAST indicated that the isolates were most similar to P. nicotianae (GenBank Accession No. AJ 854295.1) with sequence identity values of 99%. One of the isolates was deposited in the culture collection of the University of Athens (ATHUM 6519). Detached wounded leaves of Rhododendron hybrid cv. Red Jack were inoculated with agar plugs. Necrotic lesions, similar to those observed in the nursery, appeared on the inoculated leaves after 7 days of incubation at 26°C, while no symptoms developed on control leaves inoculated with sterile agar plugs. The pathogen was consistently reisolated from infected leaves, but not from the controls. P. nicotianae, being a thermophilic species, is the most common Phytophthora species in Greece, reported on more than 30 plant species (2). This pathogen has been reported on Rhododendron spp. in the United States (3,4), but to our knowledge, there was no record of this pathogen on these hosts as yet in Europe and this is the first published report of the pathogen on Rhododendron in Greece. References: (1) A. Belisario et al. Plant Dis. 87:101, 2003. (2) K. Elena. Technical Bulletin No 13. Benaki Phytopathological Institute. Athens, Greece (in Greek), 1999. (3) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN, 1996. (4) T. L. Widmer. Online publication. doi: 10.1094/PHP-2010-0317-01-RS, Plant Health Progress, 2010.


Plant Disease ◽  
2015 ◽  
Vol 99 (10) ◽  
pp. 1326-1332 ◽  
Author(s):  
B. J. Knaus ◽  
V. J. Fieland ◽  
K. A. Graham ◽  
N. J. Grünwald

The genus Phytophthora contains some of the most notorious plant pathogens affecting nursery crops. Given the recent emergence of the sudden oak death pathogen Phytophthora ramorum, particularly in association with Rhododendron spp., characterization of Phytophthora communities associated with this host in nursery environments is prudent. Many taxa may present symptoms similar to P. ramorum but we do not necessarily know their identity, frequency, and importance. Here, we present a survey of Phytophthora taxa observed from seven nurseries in the U.S. state of Oregon. Incidence and diversity of Phytophthora communities differed significantly among nurseries and among seasons within nursery. The taxa P. syringae and P. plurivora were widespread and detected at most of the nurseries sampled. Nine other taxa were also detected but were found either in a single nursery or were shared among only a few nurseries. Characterization of the Phytophthora communities present in nurseries is an important step toward understanding the ecology of these organisms as well as an aid to nursery managers in determining what risks may be present when symptomatic plants are observed. This study builds on an increasing literature, which characterizes Phytophthora community structure in nurseries.


2013 ◽  
Vol 103 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Wen Chen ◽  
Zeinab Robleh Djama ◽  
Michael D. Coffey ◽  
Frank N. Martin ◽  
Guillaume J. Bilodeau ◽  
...  

Most Phytophthora spp. are destructive plant pathogens; therefore, effective monitoring and accurate early detection are important means of preventing potential epidemics and outbreaks of diseases. In the current study, a membrane-based oligonucleotide array was developed that can detect Phytophthora spp. reliably using three DNA regions; namely, the internal transcribed spacer (ITS), the 5′ end of cytochrome c oxidase 1 gene (cox1), and the intergenic region between cytochrome c oxidase 2 gene (cox2) and cox1 (cox2-1 spacer). Each sequence data set contained ≈250 sequences representing 98 described and 15 undescribed species of Phytophthora. The array was validated with 143 pure cultures and 35 field samples. Together, nonrejected oligonucleotides from all three markers have the ability to reliably detect 82 described and 8 undescribed Phytophthora spp., including several quarantine or regulated pathogens such as Phytophthora ramorum. Our results showed that a DNA array containing signature oligonucleotides designed from multiple genomic regions provided robustness and redundancy for the detection and differentiation of closely related taxon groups. This array has the potential to be used as a routine diagnostic tool for Phytophthora spp. from complex environmental samples without the need for extensive growth of cultures.


Phytotaxa ◽  
2017 ◽  
Vol 295 (1) ◽  
pp. 49
Author(s):  
ALUWANI A. TSHIILA ◽  
SAMSON B.M. CHIMPHANGO ◽  
JAN-ADRIAAN VILJOEN ◽  
A. MUTHAMA MUASYA

Unclear boundaries between species hinder identification in the field and in herbaria, especially in species groups that can only be distinguished on the basis of subtle morphological and ecological features. One such taxon is Ficinia indica, widespread in the Greater Cape Floristic Region, growing on deep sandy soils between sea level and 1000 m elevation. Within its range, several phylogenetically related and morphologically similar species co-occur or occupy distinct habitats. Studies in herbaria show species in the Ficinia indica complex to be largely misidentified based on the use of qualitative information. Here, we investigate whether the six taxa recognized, based on one or a few characters, are supported as distinct species based on multivariate analysis of macro-morphological data. Two of the taxa were mostly separated whereas the other four taxa overlapped in multivariate space, but all the taxa could be distinguished using a single or a combination of morphological and ecological characters. We uphold the four previously recognized taxa (Ficinia argyropus, F. elatior, F. indica, F. laevis) as species, describe two new species (F. arnoldii and F. montana), and provide a dichotomous key for their identification.


Phytotaxa ◽  
2021 ◽  
Vol 500 (3) ◽  
pp. 179-200
Author(s):  
CELLINI CASTRO DE OLIVEIRA ◽  
ANDRÉ LAURÊNIO DE MELO ◽  
MARCOS JOSÉ DA SILVA

A synopsis of the genus Cnidoscolus is presented for the midwestern region of Brazil, which resulted from the analysis of about 1,200 specimens from 62 national and foreign herbaria, including type collections. Observations of populations in field were also made. Nine species are recognized, one of which, C. mcvaughii, is new to science. It is described and illustrated, and comments about its geographic distribution, morphological relationships, systematic position, phenology, and conservation status are provided, as well as images and a map. The other species are contrasted by a dichotomous key. Also, distributional information, maps, conservation evaluations, images and morphologically diagnoses are included. Eight synonymizations, one lectotypification, a neotypifcation, and the re-establishment of C. neglectus are proposed.


Nematology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Daisuke Shimada ◽  
Toshiki Komiya ◽  
Toyoshi Yoshiga

Summary A new species of free-living marine nematode, Diplolaimella ariakensis n. sp., is described from a muddy tidal flat of the Ariake Sea, southern Japan. Diplolaimella ariakensis n. sp. differs from its congeners by the following: presence of ocelli, absence of denticles in the buccal cavity, a long tail (11-14 cloacal body diam., c = 3.2-4.0 in male, 17-21 anal body diam., c = 2.9-3.4 in female), spicules as long as 1.4-1.8 cloacal body diam., gubernaculum 0.4-0.5 cloacal body diam. long with a dorsocaudal apophysis 0.5-0.7 cloacal body diam. long, presence of a precloacal supplement, absence of postcloacal papillae, presence of seven pairs of body pores in male, and the anterior position of the vulva (V = 43-46). A dichotomous key to Diplolaimella species is provided. Almost full-length 18S rRNA and partial cytochrome c oxidase subunit I gene sequences were determined for D. ariakensis n. sp. A maximum likelihood tree of 18S sequences supported a close relationship between D. ariakensis n. sp. and D. dievengatensis.


Zootaxa ◽  
2018 ◽  
Vol 4446 (4) ◽  
pp. 567
Author(s):  
REZA HOSSEINI ◽  
SAADI MOHAMMADI

A new species, Phytocoris (Eckerleinius) hawramanicum sp. nov is described from Iran. A revised dichotomous key to the species of subgenus Eckerleinius Wagner known in Iran and adjacent regions, illustrations of male genitalia and male habitus photographs of this new taxon are provided. Diagnosis of the new species is based on a comparison with other congeneric found from Iran and adjacent countries. The type specimens were deposited in the insect collection of the University of Guilan, Rasht, Iran. 


Plant Disease ◽  
2003 ◽  
Vol 87 (8) ◽  
pp. 1005-1005 ◽  
Author(s):  
E. Motta ◽  
T. Annesi ◽  
A. Pane ◽  
D. E. L. Cooke ◽  
S. O. Cacciola

In autumn 2001, bleeding cankers were observed on the basal portion of the trunk of a declining tree in a forest stand of European beech (Fagus sylvatica L.) in Latium (central Italy). A Phytophthora sp. was isolated consistently from infected trunk bark using whole apples as bait. Isolations were made from brown lesions that developed in the apple pulp around the inserted bark pieces. Pure cultures were obtained by using hyphal tip transfers. Colonies were stellate on V8 juice agar (V8A), uniform to slightly radiate on cornmeal agar, and cottony, without a distinct growth pattern on potato dextrose agar (PDA). On V8A, radial growth rates were 2.1, 4.8, and 4.5 mm/day at 10, 15, and 20°C, respectively. Colonies grew slowly at 5 and 25°C, but failed to grow at 30°C. On PDA, growth was 1.7 and 1.4 mm/day at 15 and 20°C, respectively. Catenulate hyphal swellings formed on solid and liquid media. Sporangia formed abundantly at 15°C, were ovoid to obpyriform, semipapillate, occasionally bipapillate, and had narrow exit pores (mean diameter = 5.4 μm). On V8A, pores were 40 to 50 μm in length and 25 to 40 μm in breadth. Isolates were homothallic with paragynous antheridia, oogonia were spherical with diameters from 32 to 35 μm, and oospores were plerotic with diameters from 20 to 30 μm. Electrophoretic banding patterns of mycelial proteins and isozymes (alkaline phospatase, esterase, glucose-6-phospate dehydrogenase, malate dehydrogenase, and superoxide dismutase) of beech isolates were distinct from those of reference isolates of semipapillate Phytophthora species, including P. citricola, P. hibernalis, P. ilicis (IMI 158964), P. psychrophila (CBS 803.95), and P. syringae from citrus fruits, whose identification had been confirmed on the basis of internal transcribed spacer (ITS)-restriction fragment length polymorphism (RFLP) patterns and sequences. Conversely, the electrophoretic phenotype and the ITS-RFLP pattern (and sequence) of the beech isolates were identical to those of a reference isolate (Ph24) from Quercus cerris, which was originally identified as P. syringae on the basis of morphological and cultural characters (1). However, the isolate Ph24 has been reexamined, and morphological and cultural characteristics as well as the ITS sequence would indicate that this isolate is a new species not yet formally described, for which the name P. pseudosyringae has been suggested (2). The pathogenicity of a beech isolate (IMI 390500) was compared to that of an Italian P. cambivora isolate from European chestnut by inoculating the stems of 16-month-old beech seedlings (10 replicates), which were placed at 18°C with a 12-h photoperiod. The beech isolate produced lesions averaging 2 cm long after 2 months, while those produced by the P. cambivora isolate averaged 3 cm. Control seedlings inoculated with sterile agar did not develop symptoms. The pathogen was reisolated from lesions to fulfil Koch's postulates. To our knowledge, this is the first report of this new Phytophthora sp. on beech in Italy. Conversely, the same species has been reported to be associated with decline of oak stands (1). References: (1) G. P. Barzanti et al. Phytopathol. Mediterr. 40:149, 2001. (2) T. Jung et al. Phytophthora pseudosyringae sp. nov., a new species causing root and collar rot of deciduous tree species in Europe. Mycol. Res. (In press).


Sign in / Sign up

Export Citation Format

Share Document