scholarly journals Localized Genetic and Phenotypic Diversity of Xanthomonas translucens Associated With Bacterial Leaf Streak on Wheat and Barley in Minnesota

2020 ◽  
Vol 110 (2) ◽  
pp. 257-266
Author(s):  
Rebecca D. Curland ◽  
Liangliang Gao ◽  
Cory D. Hirsch ◽  
Carol A. Ishimaru

Bacterial leaf streak (BLS) of wheat and barley has been a disease of increasing concern in the Upper Midwest over the past decade. In this study, intra- and interfield genetic and pathogenic diversity of bacteria causing BLS in Minnesota was evaluated. In 2015, 89 strains were isolated from 100 leaf samples collected from two wheat and two barley fields naturally infected with BLS. Virulence assays and multilocus sequence alignments of four housekeeping genes supported pathovar identifications. All wheat strains were pathogenic on wheat and barley and belonged to the same lineage as the Xanthomonas translucens pv. undulosa-type strain. All barley strains were pathogenic on barley but not on wheat. Three lineages of barley strains were detected. The frequency and number of sequence types of each pathovar varied within and between fields. A significant population variance was detected between populations of X. translucens pv. undulosa collected from different wheat fields. Population stratification of X. translucens pv. translucens was not detected. Significant differences in virulence were detected among three dominant sequence types of X. translucens pv. undulosa but not those of X. translucens pv. translucens. Field trials with wheat and barley plants inoculated with strains of known sequence type and virulence did not detect significant race structures within either pathovar. Knowledge of virulence, sequence types, and population structures of X. translucens on wheat and barley can support studies on plant–bacterial interactions and breeding for BLS disease resistance.

2020 ◽  
Author(s):  
Kristi Ellen Ledman ◽  
Rebecca D. Curland ◽  
Carol Ishimaru ◽  
Ruth Dill-Macky

Bacterial leaf streak (BLS) of wheat, caused by Xanthomonas translucens pv. undulosa, has been a notable disease in Minnesota wheat fields over the past decade. Potential sources of the pathogen include infested seed and crop debris. Perennial weeds are also considered a possible inoculum source, but no surveys have been conducted to evaluate which X. translucens pathovars are present on weedy grasses that are common in Minnesota wheat fields. Multilocus sequence analysis (MLSA) of four housekeeping genes (rpoD, dnaK, fyuA, and gyrB) was used to identify 77 strains isolated from six weedy grass species, wheat, and barley in and around naturally infected wheat fields in Minnesota. The MLSA phylogeny identified all strains originating from weedy grass species, except smooth brome, as X. translucens pv. undulosa, whereas strains isolated from smooth brome were determined to be X. translucens pv. cerealis. In planta character states corroborated these identifications on a subset of 41 strains, as all strains from weedy grasses caused water-soaking on wheat and barley in greenhouse assays. Multilocus sequence typing (MLST) was used to evaluate genetic diversity and revealed that sequence types of X. translucens pv. undulosa originating from weedy grass hosts are similar to those found on wheat. This study identifies both annual and perennial poaceous weeds common in Minnesota that can harbor X. translucens pv. undulosa and expands our understanding of the diversity of the pathogen population.


2011 ◽  
Vol 57 (12) ◽  
pp. 982-986 ◽  
Author(s):  
Michelle L. Shuel ◽  
Kathleen E. Karlowsky ◽  
Dennis K.S. Law ◽  
Raymond S.W. Tsang

Population biology of Haemophilus influenzae can be studied by multilocus sequence typing (MLST), and isolates are assigned sequence types (STs) based on nucleotide sequence variations in seven housekeeping genes, including fucK. However, the ST cannot be assigned if one of the housekeeping genes is absent or cannot be detected by the current protocol. Occasionally, strains of H. influenzae have been reported to lack the fucK gene. In this study, we examined the prevalence of this mutation among our collection of H. influenzae isolates. Of the 704 isolates studied, including 282 encapsulated and 422 nonencapsulated isolates, nine were not typeable by MLST owing to failure to detect the fucK gene. All nine fucK-negative isolates were nonencapsulated and belonged to various biotypes. DNA sequencing of the fucose operon region confirmed complete deletion of genes in the operon in seven of the nine isolates, while in the remaining two isolates, some of the genes were found intact or in parts. The significance of these findings is discussed.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Moein Khojasteh ◽  
S. Mohsen Taghavi ◽  
Pejman Khodaygan ◽  
Habiballah Hamzehzarghani ◽  
Gongyou Chen ◽  
...  

ABSTRACT This study provides a phylogeographic insight into the population diversity of Xanthomonas translucens strains causing bacterial leaf streak disease of small-grain cereals in Iran. Among the 65 bacterial strains isolated from wheat, barley, and gramineous weeds in eight Iranian provinces, multilocus sequence analysis and typing (MLSA and MLST) of four housekeeping genes (dnaK, fyuA, gyrB, and rpoD), identified 57 strains as X. translucens pv. undulosa, while eight strains were identified as X. translucens pv. translucens. Although the pathogenicity patterns on oat and ryegrass weed species varied among the strains, all X. translucens pv. undulosa strains were pathogenic on barley, Harding’s grass, rye (except for XtKm35) and wheat, and all X. translucens pv. translucens strains were pathogenic on barley and Harding’s grass, while none of the latter group was pathogenic on rye or wheat (except for XtKm18). MLST using the 65 strains isolated in Iran, as well as the sequences of the four genes from 112 strains of worldwide origin retrieved from the GenBank database, revealed higher genetic diversity (i.e., haplotype frequency, haplotype diversity, and percentage of polymorphic sites) among the Iranian population of X. translucens than among the North American strains of the pathogen. High genetic diversity of the BLS pathogen in Iran was in congruence with the fact that the Iranian Plateau is considered the center of origin of cultivated wheat. However, further studies using larger collections of strains are warranted to precisely elucidate the global population diversity and center of origin of the pathogen. IMPORTANCE Bacterial leaf streak (BLS) of small-grain cereals (i.e., wheat and barley) is one of the economically important diseases of gramineous crops worldwide. The disease occurs in many countries across the globe, with particular importance in regions characterized by high levels of precipitation. Two genetically distinct xanthomonads—namely, Xanthomonas translucens pv. undulosa and X. translucens pv. translucens—have been reported to cause BLS disease on small-grain cereals. As seed-borne pathogens, the causal agents are included in the A2 list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Despite its global distribution and high economic importance, the population structure, genetic diversity, and phylogeography of X. translucens remain undetermined. This study, using MLSA and MLST, provides a global-scale phylogeography of X. translucens strains infecting small-grain cereals. Based on the diversity parameters, neutrality indices, and population structure, we observe higher genetic diversity of the BLS pathogen in Iran, which is geographically close to the center of origin of common wheat, than has so far been observed in other areas of the world, including North America. The results obtained in this study provide a novel insight into the genetic diversity and population structure of the BLS pathogen of small-grain cereals on a global scale.


Microbiology ◽  
2010 ◽  
Vol 156 (7) ◽  
pp. 2035-2045 ◽  
Author(s):  
Claudia Picozzi ◽  
Gaia Bonacina ◽  
Ileana Vigentini ◽  
Roberto Foschino

Lactobacillus sanfranciscensis is a lactic acid bacterium that characterizes the sourdough environment. The genetic differences of 24 strains isolated in different years from sourdoughs, mostly collected in Italy, were examined and compared by PFGE and multilocus sequence typing (MLST). The MLST scheme, based on the analysis of six housekeeping genes (gdh, gyrA, mapA, nox, pgmA and pta) was developed for this study. PFGE with the restriction enzyme ApaI proved to have higher discriminatory power, since it revealed 22 different pulsotypes, while 19 sequence types were recognized through MLST analysis. Notably, restriction profiles generated from three isolates collected from the same firm but in three consecutive years clustered in a single pulsotype and showed the same sequence type, emphasizing the fact that the main factors affecting the dominance of a strain are correlated with processing conditions and the manufacturing environment rather than the geographical area. All results indicated a limited recombination among genes and the presence of a clonal population in L. sanfranciscensis. The MLST scheme proposed in this work can be considered a useful tool for characterization of isolates and for in-depth examination of the strain diversity and evolution of this species.


2001 ◽  
Vol 183 (8) ◽  
pp. 2553-2559 ◽  
Author(s):  
Sebastian Suerbaum ◽  
Marc Lohrengel ◽  
Agnes Sonnevend ◽  
Florian Ruberg ◽  
Manfred Kist

ABSTRACT The allelic diversity and population structure ofCampylobacter jejuni were studied by multilocus nucleotide sequence analysis. Sequences from seven housekeeping genes were obtained from 32 C. jejuni isolates isolated from enteritis patients in Germany, Hungary, Thailand, and the United States. Also included was strain NCTC 11168, the complete genomic sequence of which has recently been published. For all loci analyzed, multiple strains carried identical alleles. The frequency of synonymous and nonsynonymous sequence polymorphisms was low. The number of unique alleles per locus ranged from 9 to 15. These alleles occurred in 31 different combinations (sequence types), so that all but two pairs of strains could be distinguished from each other. Sequences were analyzed for evidence of recombination by the homoplasy test and split decomposition. These analyses showed that intraspecific recombination is frequent in C. jejuni and has generated extensive diversity of allelic profiles from a small number of polymorphic nucleotides.


2018 ◽  
Author(s):  
Ignacio Ferrés ◽  
Gregorio Iraola

Multilocus sequence typing (MLST) is a standard tool in population genetics and bacterial epidemiology that assesses the genetic variation present in a reduced number of housekeeping genes (typically seven) along the genome. This methodology assigns arbitrary integer identifiers to genetic variations at these loci allowing to efficiently compare bacterial isolates using allele-based methods. Now, the increasing availability of whole-genome sequences for hundreds to thousands of strains from the same bacterial species has motivated to upgrade the resolution of traditional MLST schemes using larger gene sets or even the core genome (cgMLST). The PubMLST database is the most comprehensive resource of described MLST and cgMLST schemes available for a wide variety of species. Here we present MLSTar as the first R package that allows to i) connect with the PubMLST database to select a target scheme, ii) screen a desired set of genomes to assign alleles and sequence types and iii) interact with other widely used R packages to analyze and produce graphical representations of the data. We applied MLSTar to analyze a set of 400 Campylobacter coli genomes, showing great accuracy and comparable performance with previously published command-line tools. MLSTar can be freely downloaded from http://github.com/iferres/MLSTar.


Author(s):  
Hemin E. Othman ◽  
Eric L. Miller ◽  
Jaladet Ms. Jubrael ◽  
Ian S. Roberts

Introduction: The exoU gene, a marker for highly virulent strains of Pseudomonas aeruginosa, is the major contributor to a wide variety of healthcare-associated infections. Methods: In this study, the antibiotic susceptibility profile, prevalence and genotyping of exoU+ P. aeruginosa were demonstrated. A total of 101 isolates of P. aeruginosa were analysed from different clinical and environmental sources. Results: The antibiotic susceptibility profile classified these isolates as extensively drug resistant (35.6%), multidrug resistant (40.5%) and non-multidrug resistant (23.7%). The prevalence of exoU gene was screened by PCR and 23 exoU+ genotypes were detected which all were clinical isolates. Multilocus sequence typing (MLST) analysis of seven loci assigned these exoU+ genotypes to 21 sequence types (STs) from which 16 new STs were identified. The prevalent STs were ST-308 and ST-235. Phylogenetic analysis using the concatenated nucleotide sequences of the seven housekeeping genes, exoUand the ITS region differentiated these exoU+ strains into five main groups. However, distinct evolutionary origins for some new sequence types were also indicated. Conclusions: The studied isolates showed the coexistence of exoU- and exoU+ genotypes of clinical P. aeruginosa in Kurdistan with a majority of MDR and XDR pattern. The prevalent STs found in other hospitals worldwide and at the international level.


1999 ◽  
Vol 89 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Kurt D. Stromberg ◽  
Linda L. Kinkel ◽  
Kurt J. Leonard

The relationship between leaf-associated population sizes of Xanthomonas translucens pv. translucens on asymptomatic leaves and subsequent bacterial leaf streak (BLS) severity was investigated. In three experiments, X. translucens pv. translucens was spray-inoculated onto 10-day-old wheat seedlings over a range of inoculum densities (104, 105, 106, 107, and 108 CFU/ml). Lesions developed most rapidly on plants inoculated with higher densities of X. translucens pv. translucens. Leaf-associated pathogen population sizes recovered 48 h after inoculation were highly predictive of BLS severity 7 days after inoculation (R2 = 0.970, P < 0.0001). The relationship between pathogen population size on leaves and subsequent BLS severity was best described by the logistic model. Leaf-associated X. translucens pv. translucens population size and BLS severity from a particular pathogen inoculum density often varied among experiments; however, the disease severity level caused by a particular leaf-associated X. translucens pv. translucens population size was not significantly different among experiments. Biological and disease control implications of the X. translucens pv. translucens population size-BLS severity relationship are discussed.


Sign in / Sign up

Export Citation Format

Share Document