scholarly journals Determining Whether Geographic Origin and Potato Genotypes Shape the Population Structure of Phytophthora infestans in the Central Region of Colombia

2019 ◽  
Vol 109 (1) ◽  
pp. 145-154
Author(s):  
Sandra Catalina Chaves ◽  
María Camila Rodríguez ◽  
María Fernanda Mideros ◽  
Florencia Lucca ◽  
Carlos E. Ñústez ◽  
...  

Pathogen variation plays an important role in the dynamics of infectious diseases. In this study, the genetic variation of 279 Phytophthora infestans isolates was assessed using a combination of 12 microsatellite simple-sequence repeat markers. Isolates were collected from 11 different potato cultivars in 11 different geographic localities of the central region of Colombia. The objective of this study was to determine whether populations were differentiated by host genotype or geographic origin. Within a single clonal lineage, EC-1, 76 genotypes were detected. An analysis of molecular variance attributed most of the variation to differences within host genotypes rather than among the host genotypes, suggesting that host cultivars do not structure the populations of the pathogen. Furthermore, the lack of a genetic population structure according to the host cultivar was confirmed by all of the analyses, including the Bayesian clustering analysis and the minimum spanning network that used the Bruvo genetic distance, which suggested that there are no significant barriers to gene flow for P. infestans among potato cultivars. According to the geographic origin, the populations of P. infestans were also not structured, and most of the variation among the isolates was attributed to differences within localities. Only some but not all localities in the north and west of the central region of Colombia showed some genetic differentiation from the other regions. The absence of sexual reproduction of this pathogen in Colombia was also demonstrated. Important insights are discussed regarding the genetic population dynamics of the P. infestans populations of the central region of Colombia that were provided by the results. In Colombia, there is a high genetic variation within the EC-1 clonal lineage with closely related genotypes, none dominant, that coexist in a wide geographic area and on several potato cultivars.

2001 ◽  
Vol 75 (17) ◽  
pp. 8054-8062 ◽  
Author(s):  
Luis Rubio ◽  
Marı́a Angeles Ayllón ◽  
Ping Kong ◽  
Andres Fernández ◽  
MaryLou Polek ◽  
...  

ABSTRACT We examined the population structure and genetic variation of four genomic regions within and between 30 Citrus tristeza virus (CTV) isolates from Spain and California. Our analyses showed that most isolates contained a population of sequence variants, with one being predominant. Four isolates showed two major sequence variants in some genomic regions. The two major variants of three of these isolates showed very low nucleotide identity to each other but were very similar to those of other isolates, suggesting the possibility of mixed infections with two divergent isolates. Incongruencies of phylogenetic relationships in the different genomic regions and statistical analyses suggested that the genomes of some CTV sequence variants originated by recombination events between diverged sequence variants. No correlation was observed between geographic origin and nucleotide distance, and thus from a genetic view, the Spanish and Californian isolates analyzed here could be considered members of the same population.


2017 ◽  
Vol 95 (12) ◽  
pp. 901-907 ◽  
Author(s):  
Benoit Talbot ◽  
Maarten J. Vonhof ◽  
Hugh G. Broders ◽  
M. Brock Fenton ◽  
Nusha Keyghobadi

Subdivided populations can be described by different models of population structure that reflect population organization, dynamics, and connectivity. We used genetic data to investigate population structure in two geographically sympatric, congeneric species of generalist ectoparasites of warm-blooded animals. We characterized the spatial genetic structure of the eastern bat bug (Cimex adjunctus Barber, 1939), an understudied and fairly abundant species, using microsatellite markers at a spatial scale representing contemporary dispersal of the species. We found seven genetic clusters, global [Formula: see text] of 0.2, 33% of genetic variation among sites, and nonsignificant isolation-by-distance. We compared these results with the common bed bug (Cimex lectularius L., 1758), a closely related but conversely well-known species, in the same geographic area. We found stronger genetic structuring in C. lectularius than in C. adjunctus, with 11 genetic clusters, [Formula: see text] of 0.7, 57% of genetic variation among sites, and significant but weak isolation-by-distance (R2 = 0.09). These results suggest that while both species can be described as having classic metapopulation structure, C. adjunctus leans more towards a patchy population and C. lectularius leans more towards a nonequilibrium metapopulation. The difference in population structure between these species may be attributable to differences in movement potential and extinction–colonization dynamics.


Plant Disease ◽  
2021 ◽  
Author(s):  
Weiya Xue ◽  
Kathleen G. Haynes ◽  
Xinshun Qu

Resistance to late blight, caused by Phytophthora infestans clonal lineage US-23, in 217 old and modern potato cultivars was evaluated in field trials in 2016 and 2017 in Pennsylvania. Significant differences in resistance were found among these cultivars (P < 0.0001). Significant interaction between cultivars and environments was found (P < 0.0001). The values of relative area under the disease progress curve ranged from 0 to 0.5841 in 2016 and from 0 to 0.5469 in 2017. Broad-sense heritability of late blight resistance was estimated to be 0.91 with a 95% confidence interval of 0.88 to 0.93. Cluster analysis classified the cultivars into 5 groups: resistant, moderately resistant, intermediate, moderately susceptible, and susceptible. Thirty cultivars showing resistance and 32 cultivars showing moderate resistance were identified. The 217 cultivars were also evaluated for foliar maturity, tuber yield and resistance to early blight, caused by Alternaria solani. A few cultivars with late blight resistance independent of late maturity were found. Late blight resistance and early blight resistance were positively correlated, and 17 cultivars possessed resistance to both diseases. Yield tradeoff associated with late blight resistance was not observed among the cultivars in the absence of disease pressure.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yeirme Jaimes ◽  
Carolina Gonzalez ◽  
Jairo Rojas ◽  
Jessica Johana Rivera ◽  
Christian Cilas ◽  
...  

The witches’ broom (Moniliophthora perniciosa) is considered as one of the main threats for cacao production and, consequently, for chocolate production worldwide.. In this work, the genetic diversity and population structure of M. perniciosa were analyzed for 59 isolates collected in five departments of Colombia and using 10 microsatellite markers. Analyses revealed 35 multilocus genotypes (MLGs) and clonal populations structure according to linkage disequilibrium analysis. One of the objectives of this study was to determine whether populations were differentiated by geographic origin or T. cacao host genotype. Analysis of molecular variance, Discriminant Analysis of Principal Components (DAPC) and Bruvo genetic distance suggested that the genetic structure was driven by geographic origin and not by T. cacao genotype. The results of this study were consistent with previous findings obtained in other cocoa producing countries. Important insights were discussed regarding the dispersal patterns of the pathogen in Colombia and the genetic change of its populations due to different environmental conditions.


Parasitology ◽  
2015 ◽  
Vol 142 (14) ◽  
pp. 1693-1702 ◽  
Author(s):  
RUBEN ALEXANDER PETTERSEN ◽  
TOR ATLE MO ◽  
HAAKON HANSEN ◽  
LEIF ASBJØRN VØLLESTAD

SUMMARYThe extent of geographic genetic variation is the result of several processes such as mutation, gene flow, selection and drift. Processes that structure the populations of parasite species are often directly linked to the processes that influence the host. Here, we investigate the genetic population structure of the ectoparasite Gyrodactylus thymalli Žitňan, 1960 (Monogenea) collected from grayling (Thymallus thymallus L.) throughout the river Glomma, the largest watercourse in Norway. Parts of the mitochondrial dehydrogenase subunit 5 (NADH 5) and cytochrome oxidase I (COI) genes from 309 G. thymalli were analysed to study the genetic variation and investigated the geographical distribution of parasite haplotypes. Three main clusters of haplotypes dominated the three distinct geographic parts of the river system; one cluster dominated in the western main stem of the river, one in the eastern and one in the lower part. There was a positive correlation between pairwise genetic distance and hydrographic distance. The results indicate restricted gene flow between sub-populations of G. thymalli, most likely due to barriers that limit upstream migration of infected grayling. More than 80% of the populations had private haplotypes, also indicating long-time isolation of sub-populations. According to a molecular clock calibration, much of the haplotype diversity of G. thymalli in the river Glomma has developed after the last glaciation.


2015 ◽  
Vol 105 (8) ◽  
pp. 1137-1145 ◽  
Author(s):  
Geoffrey Onaga ◽  
Kerstin Wydra ◽  
Birger Koopmann ◽  
Yakouba Séré ◽  
Andreas von Tiedemann

Rice blast, caused by Magnaporthe oryzae, is one of the emergent threats to rice production in East Africa (EA), where little is known about the population genetics and pathogenicity of this pathogen. We investigated the genetic diversity and mating type (MAT) distribution of 88 isolates of M. oryzae from EA and representative isolates from West Africa (WA) and the Philippines (Asia) using amplified fragment length polymorphism markers and mating-type-specific primer sets. In addition, the aggressiveness of each isolate was evaluated by inoculating on the susceptible Oryza sativa indica ‘Co39’, scoring the disease severity and calculating the disease progress. Hierarchical analysis of molecular variance revealed a low level of genetic differentiation at two levels (FST 0.12 and FCT 0.11). No evidence of population structure was found among the 65 isolates from EA, and gene flow among EA populations was high. Moreover, pairwise population differentiation (GST) in EA populations ranged from 0.03 to 0.04, suggesting that >96% of genetic variation is derived from within populations. However, the populations from Asia and WA were moderately differentiated from EA ones. The spatial analysis of principal coordinates and STRUCTURE revealed overlapping between individual M. oryzae isolates from EA, with limited distinctness according to the geographic origin. All the populations were clonal, given the positive and significant index of association (IA) and standardized index of association (rd), which indicates a significant (P < 0.001) departure from panmixia (IA and rd = 0). Both MAT1-1 and MAT1-2 were detected. However, MAT1-1 was more prevalent than MAT1-2. Pathogenicity analysis revealed variability in aggressiveness, suggesting a potential existence of different races. Our data suggest that either M. oryzae populations from EA could be distributed as a single genetic population or gene flow is exerting a significant influence, effectively swamping the action of selection. This is the first study of genetic differentiation of rice-infecting M. oryzae strains from EA, and may guide further studies on the pathogen as well as resistance breeding efforts.


2014 ◽  
Vol 36 (2) ◽  
pp. 169 ◽  
Author(s):  
Maria J. Cardoso ◽  
Nick Mooney ◽  
Mark D. B. Eldridge ◽  
Karen B. Firestone ◽  
William B. Sherwin

The eastern quoll (Dasyurus viverrinus), while still relatively abundant in Tasmania, is now threatened by the recently introduced European red fox (Vulpes vulpes). Due to a lack of demographic information on eastern quolls, molecular data become a crucial surrogate to inform the management of the species. The aim of this study was to acquire baseline genetic data for use in current and future conservation strategies. Genetic variation, at seven microsatellite loci, was lower in Tasmanian eastern quolls than in quoll species from the Australian mainland. Within Tasmania, genetic variation was greater in central than peripheral populations, with the lowest levels detected on Bruny Island. Significant genetic population structure, consistent with regional differentiation, appears related to geographic distance among populations. Levels of gene flow appeared moderate, with genetic admixture greatest among central populations. Therefore, eastern quolls from genetically diverse central Tasmanian populations will become an important source for conservation initiatives if widespread declines begin to occur. Ongoing genetic monitoring of existing populations will allow conservation strategies to be adaptive. However, in order for translocations to be successful, managers must not only consider the genetic composition of founding individuals, but also habitat-specific adaptations, disease and threatening processes at translocation sites.


2004 ◽  
Vol 94 (2) ◽  
pp. 154-162 ◽  
Author(s):  
N. E. Adler ◽  
L. J. Erselius ◽  
M. G. Chacón ◽  
W. G. Flier ◽  
M. E. Ordoñez ◽  
...  

The metapopulation structure of Phytophthora infestans sensu lato is genetically diverse in the highlands of Ecuador. Previous reports documented the diversity associated with four putative clonal lineages of the pathogen collected from various hosts in the genus Solanum. This paper simultaneously analyzes diversity of the complete collection of isolates, including a large number that had not yet been reported. This analysis confirmed the existence of three pathogen populations, which all appear to be clonal lineages, and that correspond to those previously reported as US-1, EC-1, and EC-3. No evidence was found from the analyses of recently collected isolates that would contradict earlier reports about these three lineages. In contrast, new data from a group of isolates from several similar hosts caused us to modify the previous description of clonal lineage EC-2 and its previously proposed hosts, S. brevifolium and S. tetrapetalum. Given the uncertainty associated with the identification of these hosts, which all belong to the section Anarrhichomenum, we refer to them as the Anarrhichomenum complex, pending further taxonomic clarification. New pathogen genotypes associated with the Anarrhichomenum complex were isolated recently that are A1 mating type and Ia mitochondrial DNA (mtDNA) haplotype, and therefore differ from the previously described EC-2 lineage, which is A2 and Ic, respectively. Because of uncertainty on host identification, we do not know if the new genotypes are limited to one host species and therefore represent yet another host-adapted clonal lineage. For now, we refer to the new genotypes and previously described EC-2 genotypes, together, as the pathogen group attacking the Anarrhichomenum complex. Two A2 isolates identical to the previously described EC-2 archetype were collected from severely infected plants of pear melon (S. muricatum). Pear melon is generally attacked by US-1, and this is the first clear case we have documented in which two distinct pathogen genotypes have caused severe epidemics on the same host. Based on presence of unique marker alleles (restriction fragment length polymorphism [RFLP] and mtDNA) and genetic similarity analysis using RFLP and amplified fragment length polymorphism data, EC-3 and isolates from the Anarrhichomenum complex are genetically distinct from all genotypes of P. infestans that have been reported previously. No current theory of historical migrations for this pathogen can adequately support a Mexican origin for EC-3 and genotypes of the Anarrhichomenum complex and they may, therefore, be palaeoendemic to the Andean highlands. To date, we have identified 15 hosts in the genus Solanum, in addition to the Anarrhichomenum complex, and some unidentified species of P. infestans sensu lato in Ecuador. Five of the Solanum hosts are cultivated. One isolate was collected from Brugmansia sanguinea, which represents the first report from Ecuador of a host of this pathogen that is not in the genus Solanum. However, P. infestans sensu lato was only found on flower petals of B. sanguinea. This study provides new insights into the population structure of highly specialized genotypes of P. infestans sensu lato in the Andean highlands. The results are discussed in light of previous hypotheses regarding the geographic origin of the pathogen.


2014 ◽  
Vol 104 (5) ◽  
pp. 610-621 ◽  
Author(s):  
S. Guzman-Valencia ◽  
M.T. Santillán-Galicia ◽  
A.W. Guzmán-Franco ◽  
H. González-Hernández ◽  
M.G. Carrillo-Benítez ◽  
...  

AbstractOligonychus punicae and Oligonychus perseae (Acari: Tetranychidae) are the most important mite species affecting avocado orchards in Mexico. Here we used nucleotide sequence data from segments of the nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and mitochondrial cytochrome oxidase subunit I (COI) genes to assess the phylogenetic relationships between both sympatric mite species and, using only ITS sequence data, examine genetic variation and population structure in both species, to test the hypothesis that, although both species co-occur, their genetic population structures are different in both Michoacan state (main producer) and Mexico state. Phylogenetic analysis showed a clear separation between both species using ITS and COI sequence information. Haplotype network analysis done on 24 samples of O. punicae revealed low genetic diversity with only three haplotypes found but a significant geographical population structure confirmed by analysis of molecular variance (AMOVA) and Kimura-2-parameter (K2P) analyses. In addition, a Mantel test revealed that geographical isolation was a factor responsible for the genetic differentiation. In contrast, analyses of 22 samples of O. perseae revealed high genetic diversity with 15 haplotypes found but no geographical structure confirmed by the AMOVA, K2P and Mantel test analyses. We have suggested that geographical separation is one of the most important factors driving genetic variation, but that it affected each species differently. The role of the ecology of these species on our results, and the importance of our findings in the development of monitoring and control strategies are discussed.


Sign in / Sign up

Export Citation Format

Share Document