Risk of epidemic development in nurseries from soil inoculum of Phytophthora ramorum

2021 ◽  
Author(s):  
Ebba Peterson ◽  
Niklaus J. Grünwald ◽  
Jennifer Parke

Soilborne inoculum arising from buried, infested leaf debris may contribute to the persistence of Phytophthora ramorum at recurrently positive nurseries. To initiate new epidemics, inoculum must not only survive, but produce sporangia during times conducive to infection at the soil surface. To assess this risk, we performed two year-long experiments in a soil plot at the National Ornamentals Research Site at Dominican University of California. Inoculated rhododendron leaf disks were buried at a depth of 5 or 15 cm in the early summer of 2014 or 2015. Inoculum was baited at the soil surface with non-infested leaf disks (2014 only), then retrieved to assess pathogen viability and sporulation capacity every five weeks. Two 14-week-long trials were conducted in 2016. We were able to consistently culture P. ramorum over all time periods. Soil incubation rapidly reduced the capacity of inoculum to sporulate, especially at 5 cm; however, sporulation capacity increased with the onset of seasonally cooler temperatures. P. ramorum was baited most frequently between November and January, especially from inoculum buried at 5 cm 1-day before the baiting period; in January we also baited P. ramorum from inoculum buried at 15 cm the previous June. We validate prior observations that P. ramorum poses a greater risk after exposure to cooler temperatures and provide evidence that infested leaf debris plays a role in the perpetuation of P. ramorum in nurseries. This work provides novel insights into the survival and epidemic behavior of P. ramorum in nursery soils.

2009 ◽  
Vol 99 (5) ◽  
pp. 608-619 ◽  
Author(s):  
E. J. Fichtner ◽  
S. C. Lynch ◽  
D. M. Rizzo

Because the role of soil inoculum of Phytophthora ramorum in the sudden oak death disease cycle is not well understood, this work addresses survival, chlamydospore production, pathogen suppression, and splash dispersal of the pathogen in infested forest soils. Colonized rhododendron and bay laurel leaf disks were placed in mesh sachets before transfer to the field in January 2005 and 2006. Sachets were placed under tanoak, bay laurel, and redwood at three vertical locations: leaf litter surface, litter–soil interface, and below the soil surface. Sachets were retrieved after 4, 8, 20, and 49 weeks. Pathogen survival was higher in rhododendron leaf tissue than in bay tissue, with >80% survival observed in rhododendron tissue after 49 weeks in the field. Chlamydospore production was determined by clearing infected tissue in KOH. Moist redwood-associated soils suppressed chlamydospore production. Rain events splashed inoculum as high as 30 cm from the soil surface, inciting aerial infection of bay laurel and tanoak. Leaf litter may provide an incomplete barrier to splash dispersal. This 2-year study illustrates annual P. ramorum survival in soil and the suppressive nature of redwood-associated soils to chlamydospore production. Infested soil may serve as primary inoculum for foliar infections by splash dispersal during rain events.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 371-376 ◽  
Author(s):  
S. A. Tjosvold ◽  
D. L. Chambers ◽  
E. J. Fichtner ◽  
S. T. Koike ◽  
S. R. Mori

Phytophthora ramorum has been found in potting media of containerized plants; however, the role of infested media on disease development under nursery conditions is unknown. This study assesses pathogen survival, sporulation, and infectivity to rhododendron plants in nursery pots with infected leaf litter that were maintained under greenhouse and field conditions. The influence of environmental conditions and irrigation method on disease incidence was also assessed. Infected leaf disks were buried below the soil surface of potted rhododendrons and retrieved at approximately 10-week intervals for up to 66 weeks. Pathogen survival was assessed by either isolation or induction of sporulation in water over three experimental periods. P. ramorum was recovered from infected leaf disks incubated in planted pots for longer than 1 year. Chlamydospores and sporangia formed on hydrated leaf disks but relative production of each spore type varied with the duration of incubation in soil. Root infections were detected after 40 weeks in infested soil. Foliar infections developed on lower leaves but only after spring rain events. Sprinkler irrigation promoted the development of foliar infections; no disease incidence was observed in drip-irrigated plants unless foliage was in direct contact with infested soil. Management implications are discussed.


2007 ◽  
Vol 135 (8) ◽  
pp. 2958-2972 ◽  
Author(s):  
Joshua P. Hacker ◽  
Dorita Rostkier-Edelstein

Abstract Following recent results showing the potential for using surface observations of temperature, water vapor mixing ratio, and winds to determine PBL profiles, this paper reports on experiments with real observations. A 1D column model with soil, surface-layer, and PBL parameterization schemes that are the same as in the Weather Research and Forecasting model is used to estimate PBL profiles with an ensemble filter. Surface observations over the southern Great Plains are assimilated during the spring and early summer period of 2003. To strictly quantify the utility of the observations for determining PBL profiles in the ensemble filter framework, only climatological information is provided for initialization and forcing. The analysis skill, measured against rawinsondes for an independent verification, is compared against climatology to quantify the influence of the observations. Sensitivity to changing parameterization schemes, and to prescribed values of observation error variance, is examined. Temporal propagation of skillful analyses is also assessed, separating the effects of good prior state estimates from the impact of assimilation at night when covariance is weak. Results show that accurate profiles of temperature, mixing ratio, and winds are estimated with the column model and ensemble filter assimilating only surface observations. Results are largely insensitive to choice of parameterization scheme and specified observation error variance. The effects of using different parameterization schemes within the column model depend on whether assimilation is included, showing the importance of evaluating models within assimilation systems. At night, skillful estimates are possible because the influence of the observations from the previous day is temporally propagated, and atmospheric dynamics in the residual layer operate on slow time scales. It is expected that these profiles will have applications for nowcasting and secondary models (e.g., plume dispersion models) that rely on accurate specification of PBL structure.


Plant Disease ◽  
2002 ◽  
Vol 86 (11) ◽  
pp. 1265-1270 ◽  
Author(s):  
Darryl W. M. Cook

Eight yeast isolates that bound directly to Botrytis cinerea germlings were assessed for the ability to suppress spore liberation of conidia from B. cinerea. After the yeast cell suspension from each isolate was mixed with cellulose and dried, the product was milled into a fine powder. This yeast-cellulose formulation was applied as a dry powder to sporulating B. cinerea colonies on kiwifruit (Actinidia deliciosa) leaf disks, where the particles from the formulation attached to conidiophores and conidia. Some of these formulations significantly suppressed the liberation of conidia from treated colonies. Suppression of conidial liberation could provide another management tool for the biological control of sporulating B. cinerea with applications during late epidemic development. Using α-cellulose prepared with Candida pulcherrima in the conditions imposed in the present study, there was an approximately 50% reduction in the number of conidia released with the treatment of the B. cinerea lesions. The suppression of disease through a reduction in the population of liberated conidia is discussed.


2006 ◽  
Vol 57 (7) ◽  
pp. 791 ◽  
Author(s):  
G. J. Rebetzke ◽  
R. J. Lawn

Root and shoot attributes of 12 indigenous perennial accessions of the wild mungbean (Vigna radiata ssp. sublobata) were evaluated in early and late summer sowings in the field in SE Queensland. All but one of the accessions were obtained from the Townsville–Charters Towers region of NE Queensland. In both sowings, the accessions developed thickened tap and lateral roots, the taproot thickening extending to a depth of 0.20–0.30 m below the soil surface, depending on accession. The thickened lateral roots emerged from the taproot within 0.10 m of the soil surface, and extended laterally up to 1.10 m, remaining close to the soil surface. Differences among the accessions in gross root morphology and phenology were relatively small. There were differences among the accessions in the production of seed, tuberised root, and recovered total plant biomass. Depending on accession and sowing date, the tuberised roots accounted for up to 31% of recovered plant biomass and among accessions, the root biomass was positively correlated with total plant biomass. In contrast, seed biomass represented only a small proportion of recovered plant biomass, up to a maximum of 14%, depending on accession and sowing date. Among accessions, the proportion of seed biomass tended to be negatively correlated with that of tuber biomass. The perennial trait appears to be unique to Australian accessions of wild mungbean obtained from coastal-subcoastal, speargrass-dominant woodlands of NE Queensland. Although the ecological significance of the trait remains conjectural, field observation indicates that it facilitates rapid plant re-growth following early summer rainfall, especially where dry-season fire has removed previous-season above-ground growth.


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 30-35 ◽  
Author(s):  
T. L. Widmer

Phytophthora species produce sporangia that either germinate directly or release zoospores, depending upon environmental conditions. Previous Phytophthora spp. inoculation trials have used both sporangia and zoospores as the inoculum type. However, it is unknown what impact propagule type has on disease. Rhododendron leaf disks were inoculated with P. ramorum zoospores (75, 500, or 2,400 per disk), sporangia (75 per disk), or sporangia plus trifluoperazine hydrochloride (TFP) (75 per disk), a chemical that inhibits zoospore formation. Combining results from two different isolates, the highest concentration of zoospores (2,400 per disk) induced a significantly higher percentage of necrotic leaf disk area (96.6%) than sporangia (87.6%) and 500 zoospores per disk (88.7%). The sporangia plus TFP treatment had the lowest necrosis at 47.5%. Rooted rhododendron cuttings had a higher percentage of necrotic leaves per plant when inoculated with zoospores (3,000 or 50,000 per ml) or cysts (50,000 per ml) than with sporangia (3,000 per ml) with or without TFP. The percentage of necrotic leaf area was significantly higher when cysts or zoospores were inoculated at 50,000 per ml than sporangia without TFP and zoospores at 3,000 per ml. All treatments were significantly higher in the percentage of necrotic leaf area than the leaves treated with sporangia plus TFP. This demonstrates that the full inoculum potential may not be achieved when sporangia are used as the inoculum propagule.


1995 ◽  
Vol 46 (3) ◽  
pp. 553 ◽  
Author(s):  
RJ Stirzaker ◽  
I White

Excessive cultivation in many horticultural areas results in soil structural decline and poor utilization of water and nutrients. There are no reliable techniques for growing irrigated vegetables without cultivation. This work explores the hypothesis that a winter legume cover-crop can overcome the soil limitations of no-tillage and provide an alternative to excessive cultivation in the vegetable industry. We grew lettuce (Lactuca sativa) under no-tillage in field trials on a sandy loam soil following a bare winter fallow or a cover-crop of subterranean clover (Trifolium subterraneum), and compared this with cultivation by rotary hoe. The clover died naturally in early summer or was desiccated in the spring to form a mulch of at least 5 t ha-1 on the soil surface. The experiment was carried out over a 2.5 year period. The first crop was grown during hot weather and the soil in the no-tillage treatments was only moderately compacted. The yield of lettuce was similar in the no-tillage and cultivated treatments, and increased by about 30% when a mulch was added to each treatment. The soil was artificially compacted after the first crop. The second crop was grown 18 months later, during cooler spring weather, and following two further cover-crops. The yield of no-tillage lettuce was only 40% of that obtained with cultivation. Yield in the no-tillage treatment was doubled in two different ways: (1) by the addition of a surface mulch, and (2) through changes to soil structure stimulated by a cover-crop in the absence of a mulch. The experiments showed that a well-managed cover-crop can significantly ameliorate a compacted sandy soil by modifying soil temperature, soil strength, and by stimulating the formation of biopores.


Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 723-730 ◽  
Author(s):  
K. D. Cox ◽  
H. Scherm

Pseudosclerotia (infected, mummified fruit) on the orchard floor act as oversummering and overwintering structures and the sole source of primary inoculum of Monilinia vaccinii-corymbosi, the causal agent of mummy berry disease of blueberry. Survival of pseudosclerotia may be affected by their maturity (degree of stromatization), which can vary considerably at the time of fruit abscission in early summer, and by variations in the soil surface environment. From July through October in 2 years, survival of pseudosclerotia of varying initial maturity (expressed as the proportion of fruit containing mature, melanized entostromata; immature, nonmelanized entostromata; or undifferentiated mycelia) was investigated in the laboratory relative to soil surface temperature and soil moisture content and in the field in relation to shading (full sun versus 50% shade) and ground cover (bare soil versus grass). In the laboratory, oversummer survival, expressed as the percentage of intact pseudosclerotia at the end of the experiment, was higher for cool soil temperatures (approximately 15°C), soils drier than field capacity, and pseudosclerotia containing mature entostromata. In the field, survival was related solely to initial maturity of pseudosclerotia and was highest for pseudosclerotia containing mature entostromata. Shading or grass ground cover did not significantly (P > 0.05) affect oversummer survival, presumably because they did not greatly modify soil temperature or soil moisture. When individual, intact pseudosclerotia were tested for viability using fluorescein diacetate staining, a linear relationship (r = 0.982, P < 0.0001, n = 90) between viable and intact pseudosclerotia was observed, supporting the use of the percentage of intact pseudosclerotia as a measure of oversummer survival.


2019 ◽  
Vol 109 (8) ◽  
pp. 1392-1403 ◽  
Author(s):  
David H. Gent ◽  
Sharmodeep Bhattacharyya ◽  
Trevor Ruiz

Dispersal is a fundamental aspect of epidemic development at multiple spatial scales, including those that extend beyond the borders of individual fields and to the landscape level. In this research, we used the powdery mildew of the hop pathosystem (caused by Podosphaera macularis) to formulate a model of pathogen dispersal during spring (May to June) and early summer (June to July) at the intermediate scale between synoptic weather systems and microclimate (mesoscale) based on a census of commercial hop yards during 2014 to 2017 in a production region in western Oregon. This pathosystem is characterized by a low level of overwintering of the pathogen as a result of absence of the ascigerious stage of the fungus and consequent annual cycles of localized survival via bud perennation and pathogen spread by windborne dispersal. An individual hop yard was considered a node in the model, whose disease status in a given month was expressed as a nonlinear function of disease incidence in the preceding month, susceptibility to two races of the fungus, and disease spread from other nodes as influenced by their disease incidence, area, distance away, and wind run and direction in the preceding month. Parameters were estimated by maximum likelihood over all 4 years but were allowed to vary for time transition periods from May to June and from June to July. The model accounted for 34 to 90% of the observed variation in disease incidence at the field level, depending on the year and season. Network graphs and analyses suggest that dispersal was dominated by relatively localized dispersal events (<2 km) among the network of fields, being mostly restricted to the same or adjacent farms. When formed, predicted disease attributable to dispersal from other hop yards (edges) associated with longer distance dispersal was more frequent in the June to July time transition. Edges with a high probability of disease transmission were formed in instances where yards were in close proximity or where disease incidence was relatively high in large hop yards, as moderated by wind run. The modeling approach provides a flexible and generalizable framework for understanding and predicting pathogen dispersal at the regional level as well as the implications of network connectivity on epidemic development.


Plant Disease ◽  
2020 ◽  
Author(s):  
Kelley Rose Paugh ◽  
Thomas Gordon

Fusarium oxysporum f. sp. lactucae, the cause of Fusarium wilt of lettuce, can survive on crop residue in soil. Persistence of the pathogen over time will be influenced by the rate at which residue decomposes. We evaluated the effect of drying and fragmenting crop residue on the rate of decomposition and survival of F. oxysporum f. sp. lactucae. In a controlled experiment that represented optimal drying conditions, fragmenting and oven-drying infested lettuce taproots at 30°C significantly reduced the frequency of recovery of the pathogen, compared to untreated tissue. However, in a field experiment, drying infested crop residue on the soil surface prior to incorporation did not significantly reduce survival of F. oxysporum f. sp. lactucae after one year. Regardless of treatment, there was not a significant decrease in soil inoculum density between one and 12 months after residue was incorporated. In a greenhouse experiment, fragmenting crop residue prior to incorporation in pathogen-free soil resulted in significantly higher inoculum densities of F. oxysporum f. sp. lactucae after one year. The increase in inoculum levels was associated with a faster rate of residue decomposition, which may be beneficial in the long run but not where lettuce will be replanted within the next year.


Sign in / Sign up

Export Citation Format

Share Document