scholarly journals Aggressiveness of Fusarium Species and Impact of Root Infection on Growth and Yield of Soybeans

2013 ◽  
Vol 103 (8) ◽  
pp. 822-832 ◽  
Author(s):  
María M. Díaz Arias ◽  
Leonor F. Leandro ◽  
Gary P. Munkvold

Fusarium spp. are commonly isolated from soybean roots but the pathogenic activity of most species is poorly documented. Aggressiveness and yield impact of nine species of Fusarium were determined on soybean in greenhouse (50 isolates) and field microplot (19 isolates) experiments. Root rot severity and shoot and root dry weights were compared at growth stages V3 or R1. Root systems were scanned and digital image analysis was conducted; yield was measured in microplots. Disease severity and root morphology impacts varied among and within species. Fusarium graminearum was highly aggressive (root rot severity >90%), followed by F. proliferatum and F. virguliforme. Significant variation in damping-off (20 to 75%) and root rot severity (<20 to >60%) was observed among F. oxysporum isolates. In artificially-infested microplots, root rot severity was low (<25%) and mean yield was not significantly reduced. However, there were significant linear relationships between yield and root symptoms for some isolates. Root morphological characteristics were more consistent indicators of yield loss than root rot severity. This study provides the first characterization of aggressiveness and yield impact of Fusarium root rot species on soybean at different plant stages and introduces root image analysis to assess the impact of root pathogens on soybean.

Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1316-1316 ◽  
Author(s):  
M. M. Díaz Arias ◽  
G. P. Munkvold ◽  
L. F. Leandro

Fusarium spp. are widespread soilborne pathogens that cause important soybean diseases such as damping-off, root rot, Fusarium wilt, and sudden death syndrome. At least 12 species of Fusarium, including F. proliferatum, have been associated with soybean roots, but their relative aggressiveness as root rot pathogens is not known and pathogenicity has not been established for all reported species (2). In collaboration with 12 Iowa State University extension specialists, soybean roots were arbitrarily sampled from three fields in each of 98 Iowa counties from 2007 to 2009. Ten plants were collected from each field at V2-V3 and R3-R4 growth stages (2). Typical symptoms of Fusarium root rot (2) were observed. Symptomatic and asymptomatic root pieces were superficially sterilized in 0.5% NaOCl for 2 min, rinsed three times in sterile distilled water, and placed onto a Fusarium selective medium. Fusarium colonies were transferred to carnation leaf agar (CLA) and potato dextrose agar and later identified to species based on cultural and morphological characteristics. Of 1,230 Fusarium isolates identified, 50 were recognized as F. proliferatum based on morphological characteristics (3). F. proliferatum isolates produced abundant, aerial, white mycelium and a violet-to-dark purple pigmentation characteristic of Fusarium section Liseola. On CLA, microconidia were abundant, single celled, oval, and in chains on monophialides and polyphialides (3). Species identity was confirmed for two isolates by sequencing of the elongation factor (EF1-α) gene using the ef1 and ef2 primers (1). Identities of the resulting sequences (~680 bp) were confirmed by BLAST analysis and the FUSARIUM-ID database. Analysis resulted in a 99% match for five accessions of F. proliferatum (e.g., FD01389 and FD01858). To complete Koch's postulates, four F. proliferatum isolates were tested for pathogenicity on soybean in a greenhouse. Soybean seeds of cv. AG2306 were planted in cones (150 ml) in autoclaved soil infested with each isolate; Fusarium inoculum was applied by mixing an infested cornmeal/sand mix with soil prior to planting (4). Noninoculated control plants were grown in autoclaved soil amended with a sterile cornmeal/sand mix. Soil temperature was maintained at 18 ± 1°C by placing cones in water baths. The experiment was a completely randomized design with five replicates (single plant in a cone) per isolate and was repeated three times. Root rot severity (visually scored on a percentage scale), shoot dry weight, and root dry weight were assessed at the V3 soybean growth stage. All F. proliferatum isolates tested were pathogenic. Plants inoculated with these isolates were significantly different from the control plants in root rot severity (P = 0.001) and shoot (P = 0.023) and root (P = 0.013) dry weight. Infected plants showed dark brown lesions in the root system as well as decay of the entire taproot. F. proliferatum was reisolated from symptomatic root tissue of infected plants but not from similar tissues of control plants. To our knowledge, this is the first report of F. proliferatum causing root rot on soybean in the United States. References: (1) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (2) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. The American Phytopathologic Society, St. Paul, MN, 1999. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, UK, 2006. (4) G. P. Munkvold and J. K. O'Mara. Plant Dis. 86:143, 2002.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1557-1562 ◽  
Author(s):  
M. M. Díaz Arias ◽  
G. P. Munkvold ◽  
M. L. Ellis ◽  
L. F. S. Leandro

A 3-year survey was conducted in Iowa to characterize the distribution and frequency of species of Fusarium associated with soybean roots. Ten plants were collected from each of 40 to 57 fields each year at V2 to V5 and R3 to R4 soybean growth stages. Fusarium colonies were isolated from symptomatic and symptomless roots and identified to species based on cultural and morphological characteristics. Species identification was confirmed by amplification and sequencing of the translation elongation factor (EF1-α) gene. Fifteen species were identified; Fusarium oxysporum was isolated most frequently, accounting for more than 30% of all isolates. F. acuminatum, F. graminearum, and F. solani were also among the most frequent and widespread species. Eleven other species were recovered from few fields, accounting for less than 10% of all isolates in a given year. No consistent trends were observed in geographic distribution of species. Variability in species frequency was found between soybean growth stages. Fusarium oxysporum was recovered at higher frequency during vegetative stages (40%) than reproductive stages (22%). Conversely, species such as F. acuminatum, F. graminearum, and F. solani were recovered more often from reproductive-stage plants. No significant differences in species composition were observed among fields differing in tillage practices and row spacing.


Author(s):  
Said Ezrari ◽  
Rachid Lahlali ◽  
Nabil Radouane ◽  
Abdessalem Tahiri ◽  
Adil Asfers ◽  
...  

2021 ◽  
Vol 21 (3) ◽  
pp. 270-281
Author(s):  
M.R. ISLAM ◽  
M.A. ALAM ◽  
MOHD. MOSTOFA KAMAL ◽  
R. ZAMAN ◽  
AKBAR HOSSAIN ◽  
...  

Thermal unit indices have a strong correlation with the phenology, growth and yield of crops and can be effectively used to select suitable crop cultivars for specific environmental conditions especially temperature. In this study, four mustard varieties (viz., 'BARI Sharisha-14', 'BARI Sharisha-15', 'BARI Sharisha-16' and 'Tori-7') were grown in two consecutive growing to assess the impact of thermal unit indices on crop growth and development, and to select the suitable variety for better yield under optimum sowing condition. Thermal unit indices viz., growing degree-day (GDD), helio-thermal units (HTU), phenothermal index (PTI) and heat use efficiency (HUE) were estimated from daily temperature and sunshine hours. Role of GDD on different growth indicators and seed yield (SY) were estimated through association and dependence of the traits. Significant variations in studied genotypes were observed for different traits. Among the studied varieties, 'BARI Sharisha-16' produced higher dry matter and seed yields (1.82 t ha-1) while accumulated maximum GDD at different growth stages. A strong positive association was obtained between GDD and the studied traits. Thermal unit indices had a strong influence in attaining different phenophases and other growth indicators. Therefore, results suggest that those indices could be used for growth prediction; further 'BARI Sharisha-16' is expected to use heat energy more efficiently for increasing the seed yields which indicated that the crop can perform better under global warming scenarios.


2020 ◽  
Vol 9 (3) ◽  
pp. 198-208
Author(s):  
V. Vijayalakshmi ◽  
S. Pradeep ◽  
H. Manjunatha ◽  
V. Krishna ◽  
V. Jyothi

Objective: The inoculants, mainly nitrogen fixers and phosphate solubilizing microbes, have an influence on plant growth attributes. The current study was conducted to assess the fertilizing activity of A. chroocaccum and B. megaterium strains on growth, yield parameters and nutrient uptake of Sorghum bicolor. Methods: The isolation and identification of the nitrogen-fixing bacterium- A. chroocaccum and phosphate solubilizing microbe- B. megaterium and the growth and yield parameters of Sorghum bicolor as well as NPK uptake levels were studied. Results: A. chroocaccum and B. megaterium exhibited the proliferation of microbial population in soil by synergistic interaction with plants, and the application increased the availability of NPK in the soil after harvest of the crop. These beneficial inoculants are also known to help in the uptake of some other nutrients. The maximum beneficial aspects of the plant were noticed in the plants inoculated with 100% Recommended Dose of Fertilizer (RDF)+ A. chroocaccum+ B. megaterium, and the least was noticed in the control plants at all growth stages and at the time of harvest. Conclusion: From this study, it can be concluded that the beneficial effect of A. chroocaccum and B. megaterium is observed in sorghum crop with improved yield and nutrient uptake. Therefore, this species can be used extensively for future inoculation of the sorghum crop for better growth and development and for good returns in an ecological way.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Lindsey McKeen Polizzotti ◽  
Basak Oztan ◽  
Chris S. Bjornsson ◽  
Katherine R. Shubert ◽  
Bülent Yener ◽  
...  

Prognosis of breast cancer is primarily predicted by the histological grading of the tumor, where pathologists manually evaluate microscopic characteristics of the tissue. This labor intensive process suffers from intra- and inter-observer variations; thus, computer-aided systems that accomplish this assessment automatically are in high demand. We address this by developing an image analysis framework for the automated grading of breast cancer inin vitrothree-dimensional breast epithelial acini through the characterization of acinar structure morphology. A set of statistically significant features for the characterization of acini morphology are exploited for the automated grading of six (MCF10 series) cell line cultures mimicking three grades of breast cancer along the metastatic cascade. In addition to capturing both expected and visually differentiable changes, we quantify subtle differences that pose a challenge to assess through microscopic inspection. Our method achieves 89.0% accuracy in grading the acinar structures as nonmalignant, noninvasive carcinoma, and invasive carcinoma grades. We further demonstrate that the proposed methodology can be successfully applied for the grading ofin vivotissue samples albeit with additional constraints. These results indicate that the proposed features can be used to describe the relationship between the acini morphology and cellular function along the metastatic cascade.


2010 ◽  
Vol 90 (5) ◽  
pp. 767-776 ◽  
Author(s):  
J X Zhang ◽  
A G Xue ◽  
H J Zhang ◽  
A E Nagasawa ◽  
J T Tambong

Fusarium root rot complex is a major soybean disease in Canada and the United States. Since 2006, four Fusarium species, F. oxysporum Schlechtendahl emend. Snyder & Hansen, F. graminearum Schwabe, F. avenaceum (Corda: Fr.) Sacc., and F. tricinctum (Corda) Sacc., have frequently been isolated from soybean roots in eastern Ontario, Canada. The objective of the current study was to screen 57 soybean cultivars that are commercially available in Canada for resistance to these four Fusarium root rot pathogens under greenhouse conditions. Based on root rot severity and reductions in seedling emergence, plant height and root dry weight, F. avenaceum was the most pathogenic species, followed by F. graminearum. The pathogenicity of F. oxysporum on soybean cultivars was not significantly different from that of F. tricinctum, but was significantly lower than that of F. graminearum. In replicated experiments, six, nine, eleven and seven cultivars were consistently rated as the most resistant to F. avenaceum, F. graminearum, F. oxysporum and F. tricinctum, respectively. Cultivar Maple Amber was resistant to all four Fusarium species based on root rot severity, while cultivar Altona was resistant to F. avenaceum, F. oxysporum and F. tricinctum. Four cultivars, 9004, AC Harmony, Lanark and Maple Arrow, each showed resistance to two different Fusarium species.Key words: Soybean, Glycine max, Fusarium root rot, Fusarium oxysporum, F. graminearum, F. avenaceum, F. tricinctum


2021 ◽  
Vol 26 (02) ◽  
pp. 287-293
Author(s):  
Fan Yang

Soybean root rot is a worldwide soil-borne fungal disease threatening soybean production, causing huge losses in yield and quality of soybean. Fusarium species are well recognized as the important causal agent of Fusarium root rot. To screen the beneficial Bacillus strains with capability of suppressing soybean root rot and evaluate the impact of Bacillus combined with biochar against soybean root rot, a pot experiment was conducted with different treatments. In this study, as potential biological control measures, antagonistic Bacillus isolates and different types of biochar were added to soil separately and excellent antagonistic strains mixed with bamboo biochar were applied to the soil. The results showed that seven Bacillus strains promoted the growth of soybean seedlings and reduced root rot severity by 33 to 61%. Bacillus amylolique faciens NH2 was associated with the lowest incidence of soybean root rot, indicating its bio-control potential. The value of plant height, root length and plant dry weight of soybean in the sterilized soil mixed with biochar separately treatment were superior to those of soybean in the inoculated with pathogen treatment, especially the bamboo biochar treatment reduced soybean root rot caused by Fusarium significantly and which bio-control efficacy was 77.41%. The soybean plants shoot and root dry weights in the biochar mixed B. amylolique faciens NH2 or B. subtilis DBK treatments were increased by17.1, 10.7% and 19.51, 19.64%, respectively, which were significantly higher than those of the inoculated pathogen treatment. Compared to antagonistic strain or biochar individual treatments, the disease control efficiency on soybean root rot was up to 64.86% in NH2 strain mixed with bamboo biochar treatment, which reduced root rot severity significantly and showed a synergistic effect. These results suggest that antagonistic Bacillus strains mixed with biochar can be used as an effective alternative in managing soybean root rot. © 2021 Friends Science Publishers


2018 ◽  
Vol 33 (2) ◽  
pp. 97-107 ◽  
Author(s):  
Mira Vojvodic ◽  
Brankica Tanovic ◽  
Milica Mihajlovic ◽  
Petar Mitrovic ◽  
Ivana Vico ◽  
...  

Strawberry production is a popular, fast-growing agricultural business in Serbia. Its cultivar selection has been changing fast, following market demands. One of the limiting factors of strawberry production worldwide is black root rot, primarily caused by binucleate Rhizoctonia. Recently, outbreaks of black root rot of strawberry have occurred in Serbia and the estimated disease incidence was up to 30%. Isolates of binucleate Rhizoctonia AG-A were recovered from symptomatic strawberry plants, and characterized on the bases of morphological, molecular and pathogenic features. Despite their uniform morphological characteristics, the isolates demonstrated genetic variability within ITS rDNA, grouping into three different phylogenetic sub-clusters which comprise AG-A isolates originating from Italy, Israel, Japan and the USA. The binucleate Rhizoctonia AG-A from Serbia exhibited uniform virulence on strawberry after inoculation of daughter plants and detached leaf petioles, as well as on seedlings of bean, carrot and sunflower, while they were non-pathogenic to wheat, maize, tomato, pepper, tobacco, cucumber, lettuce, peas, cabbage, rapeseed and sugar beet.


Sign in / Sign up

Export Citation Format

Share Document